
(Updated November 10, 2017)

An Introduction to Tidyverse

Joey Stanley
Doctoral Candidate in Linguistics, University of Georgia
joeystanley.com

orcid.org/0000-0002-9185-0048

Presented at the UGA Willson Center DigiLab
Friday, November 10, 2017

This is the third installment of the R workshop series. This document will cover some of the basics
of importing, cleaning, and transforming your data using the Tidyverse: (1) some general thoughts
on tidyverse; (2) getting data into R from csv files or Microsoft Excel with some explanation of
“tibbles”; (3) transforming your data by removing, reordering, adding columns; (4) cleaning your
data by renaming columns, renaming individual levels within columns, collapsing factors, anf iltering;
(5) reshaping your data from wide to tall format and vice versa; (6) merging datasets and creating
essentially an R version of Excel’s lookup tables; and (7) some concluding remarks.

Download this PDF from my website at

joeystanley.com/r

An Introduction to Tidyverse
 by Joseph A. Stanley is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License

orcid.org/0000-0002-9185-0048

1 INTRODUCTION

Working with data can be super frustrating. I've been there. In fact, this tweet from just under a
year ago, only hints at the frustration I was feeling at the time.

I'm pretty sure I had spent 6–8 hours working on transforming my data from "wide" to "tall" to get it
to work in some visualization (we'll get to what that means later). I don't even think I ended up
getting it done in the end, and I found an alternative solution.

That was about a year ago, and now I'm giving a workshop on this stuff. This just goes to show that
in less than a year you can learn to do this stuff effectively in your own code as well.

1.1 WHAT IS THE T IDYVERSE?

According to its website (tidyverse.org), "The tidyverse is an opinionated collection of R packages
designed for data science. All packages share an underlying philosophy and common APIs." Let's
break that down.

1. It's a collection of R packages—When you install the tidyverse package, all you're doing is
installing several other packages that fall its umbrella. Some of the packages that are part of
tidyverse include dplyr, tidyr, and ggplot2, which are among the most popular R
packages. There are others that are super useful like readxl, forcats, and stringr that are
part of the tidyverse, but don't come installed automatically with the tidyverse package, so
you'll have to lead them explicitly.

2. They share an underlying philosophy and common APIs—This is one of the reasons that
makes the tidyverse so great: all the packages seamlessly integrate and work together
harmoniously. There's nothing worse than having to modify your dataframe in some way in
order to get it to work for some function. With the tidyverse, you can jump from one of its
packages to another and send data around and nothing will ever get mad at you.

3. They are designed for data science—A lot of what R can do is for statistical modeling on your
data. Tidyverse doesn't do a lot of statistics, but it can help you every step of the way
otherwise. You can read in your data, make any modifications, and visualize it with no

orcid.org/0000-0002-9185-0048 3

problem. When it actually comes to fancy statistical models though, you'll have to find more
specialized packages. This is not to say that the tidyverse is deficient in any way: reshaping and
tidying your data is no small feat and the tidyverse makes this a lot easier.

4. They are opinionated—The author of these packages, Hadley Wickham, is very open about
how they are created, and says that this is just one way to work with data in R. You're certainly
welcome to work with your data another way, but using the tidyverse is not the only solution:
it's just Hadley's opinion of how it should be best done.

There's a ridiculous amount to cover with this suite. Just ggplot2 alone would take a hundred
workshops to cover everything. The possibilities are nearly endless and I obviously can't teach you
everything in just a single 1-hour workshop. To give you an idea of what functions in the tidyverse
can do, here's a brief summary of some of its packages.

1. ggplot2 is a very popular suite for visualizing data. Unlike other visualizations you might do,
ggplot2 allows for pretty much infinite customizability in your plots, which is really handy if
you have nitpicky details you want to control.

2. dplyr lets you manipulate your data by doing things like adding and removing columns,
filtering and subsetting your data, and summarizing your data (such as getting the average of
some value per group within your data).

3. tidyr lets you reshape your data from "wide" to "tall" format. It's like reshape and reshape2
(also written by Hadley Wickham), but in my opinion it does the job better with code that's
easier to interpret.

4. readxl makes allows you to read in Excel files directly into R without the need to convert to
.csv first

5. forcats comes with a bunch of functions for working with categorical data.

6. stringr makes it easier to work with text in your data.

There are many other packages that are part of the tidyverse that handle more specific tasks like
specific data types. There are also ones that are more for the R programmer and can help you
publish your R scripts into your own libraries. For now, I'll stick with just the basics, but be aware
that there is much, much more. For more information on what's possible, check out the book R for
Data Science by Garrett Grolemund and Hadley Wickham (available for free viewing at
http://r4ds.had.co.nz), which goes into more detail about what functions in the tidyverse can do.
Much of this workshop is based on a couple chapters from that book.

1.2 INSTALLATION

Just like any other R package, installing tidyverse is straightforward.

install.packages("tidyverse")

orcid.org/0000-0002-9185-0048 4

You only need to run this once and then it's on your computer. This doesn't make it automatically
available to R though, so you'll need to explicitly tell R you'll be working with the package, using
the library function.

There will be some warning messages, but you can probably safely ignore those.

Side note, as of about two days ago (November 8, 2017), tidyverse updated to a new version
(v1.2.0). Looking through the release notes, the changes look mostly minor so it shouldn't affect
the code in this workshop, which was prepared using an older version of the package (v1.1.1).

2 GETTING DATA INTO R

The first step to any project in R is to get your data into R. For this we'll make use of two functions.
The first is read_csv and is a part of the readr package, which was automatically installed and
loaded when you loaded tidyverse. For this section I'll be drawing from Chapter 11 "Data Import"
from R for Data Science, which can be read here: http://r4ds.had.co.nz/data-import.html.

2.1 CSV F ILES

If you've read data into R before, you've probably used the standard read.csv (with a period)
function. This one works just fine and you can get by perfectly well with it. However, tidyverse's
read_csv (with an underscore), has some additional perks that the standard function doesn't come
with. To show the first one, let's go ahead and read in some data. This data contains all the
McDonalds menu items as well as some basic nutritional information and was downloaded for free
at Kaggle.com. You can download it directly from my website using this code:

menu <- read_csv("http://joeystanley.com/data/menu.csv")

Parsed with column specification:
cols(
Category = col_character(),
Item = col_character(),
Oz = col_double(),
Calories = col_integer(),
Fat = col_double(),
Sugars = col_integer()
)

The first perk of read_csv is that it gives you some output showing you how it parsed each
column of your spreadsheet. Not all data should be treated the same: numbers are very different
from text, and R (as well as you) should be aware of what data types are contained in your file so
that it (and you) can work with it the best way possible. There are some heuristics that determine
how read_csv parses your data which we won't get into here, but it's nice to see what the final
result was just to make sure that numbers get treated as numbers, text as text, etc. Later in this
workshop we'll see one way to change it in case the function got something wrong.

orcid.org/0000-0002-9185-0048 5

The second perk of read_csv is that it turns your data into what's called a "tibble". A tibble is
tidyverse's version of a dataframe. Essentially, you can think of it as just a dataframe, but again,
with some additional perks. One major difference between dataframes and tibbles is when you print
them. When you print a regular dataframe, it'll vomit out everything. You get all rows (even if there
are many of them) and all columns, which can be hard to read if your screen isn't wide enough to
display them since they'll spill over into multiple rows. Here's our menu data printed out as a
dataframe.

menu.df <- as.data.frame(menu)
menu.df

Category Item
1 Breakfast Egg McMuffin
2 Breakfast Egg White Delight
3 Breakfast Sausage McMuffin
4 Breakfast Sausage McMuffin with Egg
5 Breakfast Sausage McMuffin with Egg Whites
6 Breakfast Steak & Egg McMuffin
7 Breakfast Bacon, Egg & Cheese Biscuit (Regular Biscuit)
8 Breakfast Bacon, Egg & Cheese Biscuit (Large Biscuit)
9 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit)
10 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit)
Oz Calories Fat Sugars
1 4.8 300 13 3
2 4.8 250 8 3
3 3.9 370 23 2
4 5.7 450 28 2
5 5.7 400 23 2
6 6.5 430 23 3
7 5.3 460 26 3
8 5.8 520 30 4
9 5.4 410 20 3
10 5.9 470 25 4

I've truncated the output to save space, but on your screen you'll see that this displays the entire
contents of the dataframe. When we print the tibble version, it's a lot shorter.

menu

A tibble: 260 x 6
Category Item
<chr> <chr>
1 Breakfast Egg McMuffin
2 Breakfast Egg White Delight
3 Breakfast Sausage McMuffin
4 Breakfast Sausage McMuffin with Egg
5 Breakfast Sausage McMuffin with Egg Whites
6 Breakfast Steak & Egg McMuffin
7 Breakfast Bacon, Egg & Cheese Biscuit (Regular Biscuit)
8 Breakfast Bacon, Egg & Cheese Biscuit (Large Biscuit)

orcid.org/0000-0002-9185-0048 6

9 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit)
10 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit)
... with 250 more rows, and 4 more variables: Oz <dbl>, Calories <int>,
Fat <dbl>, Sugars <int>

When you look at a tibble, you only peek at the data. You get the first 10 rows and only as many
columns as can fit on your screen without spilling over into a new column. If there are additional
columns, they're lised at the bottom. You also get to see what datatype each column is at the top of
each column below the column names. Ths printing feature makes it easy to examine just a portion
of your data without flooding your R Console.

Finally, using read_csv is actually about 10 times faster than the regular read.csv function. If
you work with very large datasets, this is a very good thing. Furthermore, if it does take more than
about five seconds to read in your file, you'll actually get a little progress bar down in your R
Console saying how much it's done and how long it has taken. This is nice to see so you know that
R is making progress and didn't crash.

Side note, since the menu items are so long, I'm going to truncate it for display purposes only. You
don't have to do this.

menu$Item <- str_sub(menu$Item, 1, 24)
head(menu)

A tibble: 6 x 6
Category Item Oz Calories Fat Sugars
<chr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Egg McMuffin 4.8 300 13 3
2 Breakfast Egg White Delight 4.8 250 8 3
3 Breakfast Sausage McMuffin 3.9 370 23 2
4 Breakfast Sausage McMuffin with Eg 5.7 450 28 2
5 Breakfast Sausage McMuffin with Eg 5.7 400 23 2
6 Breakfast Steak & Egg McMuffin 6.5 430 23 3

2.2 EXCEL F ILES

In the Intro to R Workshop, I said that it's possible to load Excel files directly into R. This is
possible thanks to the read_excel function which is in the readxl package. This package is part
of the tidyverse, but does not come standard in the tidyverse library, so you'll have to load it
explicitly (it should be installed already).

library(readxl)

The syntax of read_excel is very similar to read_csv (a trend you'll notice over and over in the
tidyverse). All you need to do is specify the path to the file itself. In the case of Excel files, you can't
read them directly from a website like you can with csv files, so you'll have to download the data
(just go to http://joeystanley.com/data/snoozing.xlsx and it'll automatically download) and then
load it from your computer from wherever you saved your file.

snooze <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx")

orcid.org/0000-0002-9185-0048 7

This file contains some fake data I created on how sleeping patterns. We'll get to it later in the
workshop. The crucial thing now is that it's an Excel file and it can be read in directly into R which
is pretty cool.

By default, this reads in the first sheet of the Excel file. You can change this by adding the sheet
argument and providing either the name of the sheet, or the sheet number. This particular file
contains two sheets: the first has all the data and the second is nonsense. We can specify that we
want the second sheet (called "blank") by indicating it:

blank <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx",
 sheet="blank")

The perks of using read_excel are essentially the same as using read_csv: your data is saved as a
tibble and it's much faster. Personally, I love this function. I used to work in Excel to prepare my
data, but then every time I wanted to make a change, I had to edit the Excel file and then save it as
a csv, and then read it into R. It was just too many steps. Now, I can work with Excel directly and
bypass the csv step entirely.

There is much more that you can do with reading data into R, not only with just those two
functions, but with many other specialized functions in readr and readxl, including those for
reading in specific data formats. For example, you can specify column names or column types as
you read it in so you don't have to change them later. I'll let you explore those on your own.

3 TRANSFORMING YOUR DATA

Now that you've got your data loaded in, you'll proably need to do some processing before moving
on to analysis. In my experience, my R code always starts off with many lines of preprocessing to
make sure everything is nice and clean and consistently formatted before moving on to the statistics
and visualizations.

What do I mean by "processing"? Well, it's likely that your data isn't exactly the way it needs to be
for analysis. Maybe the column names aren't right, or a number that's supposed to be a number is
actually being treated like text, or you may want to add, remove, or reorder columns entirely. Even
if your data is pristine, you may have to do set a reference level for categorical data or filter the data
in some way. All of this can be done using functions in the dplyr package, one of the core
tidyverse packages. I'll cover some basics, but you can read more about the topics in this section
R for Data Science chapters 18 on Pipes (http://r4ds.had.co.nz/pipes.html), and Chapter 5 "Data
Transformation" (http://r4ds.had.co.nz/transform.html)

3.1 PIP ING

Before we move on, I want to pause and introduce some tidyverse syntax. To explain how it's used,
let's say we want to see the McDonalds menu items. We could split this up into two steps, reading
it in and then printing it:

orcid.org/0000-0002-9185-0048 8

menu <- read_csv("http://joeystanley.com/data/menu.csv")
print(menu)

A tibble: 260 x 6
Category Item Oz Calories Fat Sugars
<chr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Egg McMuffin 4.8 300 13 3
2 Breakfast Egg White Delight 4.8 250 8 3
3 Breakfast Sausage McMuffin 3.9 370 23 2
4 Breakfast Sausage McMuffin with Eg 5.7 450 28 2
5 Breakfast Sausage McMuffin with Eg 5.7 400 23 2
6 Breakfast Steak & Egg McMuffin 6.5 430 23 3
7 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26 3
8 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30 4
9 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20 3
10 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25 4
... with 250 more rows

But that seems a little repetitive. With menu it's not so bad because it's small name, but if you've got
some long name that's similar to other dataframes in your script, it could get annoying. It's like
listening to someone never using a pronoun and saying a peron's name every sentence: "Joey's my
friend. Joey and I went to the store and then Joey's phone fell out of Joey's pocket…". Wouldn't it be
nice if R could sort of "remember" what we're working with?

For this reason, we have the pipe. This little function is one of the most useful features of the
tidyverse and it looks like this: %>%. What the pipe does is it takes the output of the function on the
left and feeds it to the right function as its first argument.

So if we wanted to read in the McDonalds menu data and then print it, we can pipe the results of
read_csv into the print function and take care of this all in one go. The following block is does
the exact same thing as the previous one.

menu <- read_csv("http://joeystanley.com/data/menu.csv") %>%
 print()

Notice that in the print function, you don't need to put the same of the dataframe in. Basically, the
pipe can be read as, "and then with this, do…". So "read this cvs file and then with that, print it".

There are lots of benefits to using the pipe. First, it saves on typing. You only have to type the name
of the dataframe (menu) once. This is especially nice if you have some long dataframe name.
Second, when you execute the command, it'll interpret both lines as a single line, so it saves a
couple cliks/keystrokes, etc. And with the pipe, you're not limited to just two functions, you can
stack as many of them as you want to make what looks like a "paragraph" of code that all gets
treated as one. More on that in a sec. Finally, because it's all treated as one command, you don't
need to come up with names for the various intermediate steps (which are confusing if you have
too many, and get very long) like menu.clean or menu.clean.renamed or menu3.

orcid.org/0000-0002-9185-0048 9

The reason why this works is because in pretty much all the functions in the tidyverse, the first
argument is data=.... Since the pipe takes the thing on the left and makes it the first argument on
the right, if that first argument is data, then it'll fill that slot perfectly.

3.2 REMOVING COLUMNS

So when we look at our McDonald's data, we see that the Item name is super wide (unless you
truncated it like I did). It was so wide that when we printed anything, we didn't see any of the other
columns. We could just remove it entirely, which would free things up. We can do this with the
select function.

With select, as long as we're piping some data into it, all we need to do is specifiy which columns
we want to keep, and it'll keep them. So if we wanted to just look at the Calories and Sugars, we
could do that easily:

menu %>%
 select(Calories, Sugars)

A tibble: 260 x 2
Calories Sugars
<int> <int>
1 300 3
2 250 3
3 370 2
4 450 2
5 400 2
6 430 3
7 460 3
8 520 4
9 410 3
10 470 4
... with 250 more rows

Perfect, with just a simple line of code, we were able to do that. Notice that we don't even need
quotes around the column names, which saves some typing. If we wanted to look at everything
except the menu item name, we just put a minus sign before it:

menu %>%
 select(-Item)

A tibble: 260 x 5
Category Oz Calories Fat Sugars
<chr> <dbl> <int> <dbl> <int>
1 Breakfast 4.8 300 13 3
2 Breakfast 4.8 250 8 3
3 Breakfast 3.9 370 23 2
4 Breakfast 5.7 450 28 2
5 Breakfast 5.7 400 23 2
6 Breakfast 6.5 430 23 3
7 Breakfast 5.3 460 26 3

orcid.org/0000-0002-9185-0048 10

8 Breakfast 5.8 520 30 4
9 Breakfast 5.4 410 20 3
10 Breakfast 5.9 470 25 4
... with 250 more rows

It removes that column.

What if we wanted the Oz, Colaries, Fat, and Sugars column and wanted to leave off Category and
Item? You could add minus signs before each one you want to remove:

menu %>%
 select(-Category, -Item)

A tibble: 260 x 4
Oz Calories Fat Sugars
<dbl> <int> <dbl> <int>
1 4.8 300 13 3
2 4.8 250 8 3
3 3.9 370 23 2
4 5.7 450 28 2
5 5.7 400 23 2
6 6.5 430 23 3
7 5.3 460 26 3
8 5.8 520 30 4
9 5.4 410 20 3
10 5.9 470 25 4
... with 250 more rows

Alternatively, if the columns you want to keep are in order, you can just print the first and last one
and put a colon (:) between them, and it'll get everything in between:

menu %>%
 select(Oz:Sugars)

A tibble: 260 x 4
Oz Calories Fat Sugars
<dbl> <int> <dbl> <int>
1 4.8 300 13 3
2 4.8 250 8 3
3 3.9 370 23 2
4 5.7 450 28 2
5 5.7 400 23 2
6 6.5 430 23 3
7 5.3 460 26 3
8 5.8 520 30 4
9 5.4 410 20 3
10 5.9 470 25 4
... with 250 more rows

This is analgous to the R syntax of creating sequential numbers (a list from 1 to 10 would be simply
1:10).

orcid.org/0000-0002-9185-0048 11

So using the select function is super useful because you can very quickly pick out the columns
you want to see or remove columns you don't need. The code is easy and intuitive to write and it's
clear from reading it what it's doing. That's what makes tidyverse so useful.

3.3 REORDERING COLUMNS

You can also use select to reorder your columns. Just put the column names in whatever order
you want and that's how they'll appear:

menu %>%
 select(Oz, Sugars, Fat, Calories)

A tibble: 260 x 4
Oz Sugars Fat Calories
<dbl> <int> <dbl> <int>
1 4.8 3 13 300
2 4.8 3 8 250
3 3.9 2 23 370
4 5.7 2 28 450
5 5.7 2 23 400
6 6.5 3 23 430
7 5.3 3 26 460
8 5.8 4 30 520
9 5.4 3 20 410
10 5.9 4 25 470
... with 250 more rows

To accomplish the same thing in base R, as far as I know you'd have to specify the columns by
numbers (the above code would be something like menu <- menu[c(3,6,5,4),]). This is super
annoying for lost of reasons: 1) you have to figure out what number each column is, which is not
easy if you have many columns; 2) if your dataset changes, your code breaks because column 3
might not always be the Oz column; 3) it's not clear from reading the code what columns you're
keeping. Tidyverse solves all these problems by just using the names instead of numbers.

An alternative in base R is to use the subset function, which behaves very similarly to select.
Here's a base R equivalent:

Base R equivalent
subset(menu, select=c(Oz, Sugars, Fat, Calories))

A tibble: 260 x 4
Oz Sugars Fat Calories
<dbl> <int> <dbl> <int>
1 4.8 3 13 300
2 4.8 3 8 250
3 3.9 2 23 370
4 5.7 2 28 450
5 5.7 2 23 400
6 6.5 3 23 430
7 5.3 3 26 460

orcid.org/0000-0002-9185-0048 12

8 5.8 4 30 520
9 5.4 3 20 410
10 5.9 4 25 470
... with 250 more rows

With just a few columns, it's not a big deal to type everything in tidyverse, but if you have a
spreadsheet with many columns, it can still get tedious, especially if all you want to do is move one
column around. For this reason, dplyr comes with the everything function, which is shorthand
for "all other variables."" So if you wanted to move the Sugars column to the front, you can just
type that column name and then everything():

menu %>%
 select(Sugars, everything())

A tibble: 260 x 6
Sugars Category Item Oz Calories Fat
<int> <chr> <chr> <dbl> <int> <dbl>
1 3 Breakfast Egg McMuffin 4.8 300 13
2 3 Breakfast Egg White Delight 4.8 250 8
3 2 Breakfast Sausage McMuffin 3.9 370 23
4 2 Breakfast Sausage McMuffin with Eg 5.7 450 28
5 2 Breakfast Sausage McMuffin with Eg 5.7 400 23
6 3 Breakfast Steak & Egg McMuffin 6.5 430 23
7 3 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26
8 4 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30
9 3 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20
10 4 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25
... with 250 more rows

Again, this is super useful for when you have tons of columns and only need to move a couple up
towards the front.

So the select function is great because it can take care of a lot of stuff like removing and
reordering columns all at once. The syntax is intuitive and clear. And, as it turns out, the function
"returns" your modified dataframe, so you can then pipe it onto other tidyverse functions for
additional processing. Pretty cool.

3.4 ADDING COLUMNS

We've seen how to remove and reorder columns with select, so how do we add columns? Let's say
we want to take our McDonalds data and create a new column. We have information about the
weight of the item (in ounces) and both the fat and sugar content. What if we wanted to look at the
most sugar per ounce? For this, we can use the mutate function, which creates a new column and
tags it onto the end.

menu %>%
 mutate(sugar_per_oz = Sugars / Oz) %>%
 select(sugar_per_oz, everything())

orcid.org/0000-0002-9185-0048 13

A tibble: 260 x 7
sugar_per_oz Category Item Oz Calories Fat
<dbl> <chr> <chr> <dbl> <int> <dbl>
1 0.6250000 Breakfast Egg McMuffin 4.8 300 13
2 0.6250000 Breakfast Egg White Delight 4.8 250 8
3 0.5128205 Breakfast Sausage McMuffin 3.9 370 23
4 0.3508772 Breakfast Sausage McMuffin with Eg 5.7 450 28
5 0.3508772 Breakfast Sausage McMuffin with Eg 5.7 400 23
6 0.4615385 Breakfast Steak & Egg McMuffin 6.5 430 23
7 0.5660377 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26
8 0.6896552 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30
9 0.5555556 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20
10 0.6779661 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25
... with 250 more rows, and 1 more variables: Sugars <int>

The syntax here is that you type the name of the new column you want to create (not in quotes), an
equals sign, and then do whatever calculations or functions you want on existing columns (also not
in quotes). So here, we're taking the Sugars and dividing it by the Oz column. This creates a new
column called sugar_per_oz, tagged on at the end of our dataframe. I then piped it to a select
function, which reorders the columns so that this new one is at the front (so we can see it).

If you wanted to do the same thing in base R, it's possible and not too much of a headache. But
you'd need to create some intermediate dataframe for each step along the way.

Base R equivalent
menu_temp <- menu
menu_temp$sugar_per_oz <- menu_temp$Sugars / menu_temp$Oz
menu_temp <- subset(menu_temp, select=c(sugar_per_oz, Category:Sugars))

When adding columns using mutate, you can add as many additional columns as you want into a
single function as long as they're separated by commas. Here, I create the sugar_per_oz column as
well as fat_per_oz and calories_per_oz.

menu %>%
 mutate(sugar_per_oz = Sugars / Oz,
 fat_per_oz = Fat / Oz,
 calories_per_oz = Calories / Oz) %>%
 select(sugar_per_oz, fat_per_oz, calories_per_oz, Item, everything())

A tibble: 260 x 9
sugar_per_oz fat_per_oz calories_per_oz Item
<dbl> <dbl> <dbl> <chr>
1 0.6250000 2.708333 62.50000 Egg McMuffin
2 0.6250000 1.666667 52.08333 Egg White Delight
3 0.5128205 5.897436 94.87179 Sausage McMuffin
4 0.3508772 4.912281 78.94737 Sausage McMuffin with Eg
5 0.3508772 4.035088 70.17544 Sausage McMuffin with Eg
6 0.4615385 3.538462 66.15385 Steak & Egg McMuffin
7 0.5660377 4.905660 86.79245 Bacon, Egg & Cheese Bisc
8 0.6896552 5.172414 89.65517 Bacon, Egg & Cheese Bisc

orcid.org/0000-0002-9185-0048 14

9 0.5555556 3.703704 75.92593 Bacon, Egg & Cheese Bisc
10 0.6779661 4.237288 79.66102 Bacon, Egg & Cheese Bisc
... with 250 more rows, and 5 more variables: Category <chr>, Oz <dbl>,
Calories <int>, Fat <dbl>, Sugars <int>

So the mutate function is really handy for adding new columns, again with easy-to-understand
syntax that makes it easy to read and write.

3.5 GLOBAL CHANGES TO COLUMNS

With mutate you can actually make some substantial changes to columns. Let's say you like the Oz
column, but you want it rounded to the nearest integer, rather than with decimals. We can do this
with the base R round funtion, specifiying that we want it to round to zero decimal places. (I'll
rearrange the columns so you can more easily see the changes.)

menu %>%
 mutate(Oz_rounded = round(Oz, 0)) %>%
 select(Category:Oz, Oz_rounded, everything())

A tibble: 260 x 7
Category Item Oz Oz_rounded Calories Fat
<chr> <chr> <dbl> <dbl> <int> <dbl>
1 Breakfast Egg McMuffin 4.8 5 300 13
2 Breakfast Egg White Delight 4.8 5 250 8
3 Breakfast Sausage McMuffin 3.9 4 370 23
4 Breakfast Sausage McMuffin with Eg 5.7 6 450 28
5 Breakfast Sausage McMuffin with Eg 5.7 6 400 23
6 Breakfast Steak & Egg McMuffin 6.5 6 430 23
7 Breakfast Bacon, Egg & Cheese Bisc 5.3 5 460 26
8 Breakfast Bacon, Egg & Cheese Bisc 5.8 6 520 30
9 Breakfast Bacon, Egg & Cheese Bisc 5.4 5 410 20
10 Breakfast Bacon, Egg & Cheese Bisc 5.9 6 470 25
... with 250 more rows, and 1 more variables: Sugars <int>

In fact, if we know that's what we want to do with the Oz column, we can just overwrite it by
creating a "new column with the same name as an existing one.

menu %>%
 mutate(Oz = round(Oz, 0))

A tibble: 260 x 6
Category Item Oz Calories Fat Sugars
<chr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Egg McMuffin 5 300 13 3
2 Breakfast Egg White Delight 5 250 8 3
3 Breakfast Sausage McMuffin 4 370 23 2
4 Breakfast Sausage McMuffin with Eg 6 450 28 2
5 Breakfast Sausage McMuffin with Eg 6 400 23 2
6 Breakfast Steak & Egg McMuffin 6 430 23 3
7 Breakfast Bacon, Egg & Cheese Bisc 5 460 26 3
8 Breakfast Bacon, Egg & Cheese Bisc 6 520 30 4

orcid.org/0000-0002-9185-0048 15

9 Breakfast Bacon, Egg & Cheese Bisc 5 410 20 3
10 Breakfast Bacon, Egg & Cheese Bisc 6 470 25 4
... with 250 more rows

Normally, I wouldn't recommend doing this unless you're sure you know that you don't need the
rounded data. You're of course only modifying the data in R only and your original dataset (the one
that's saved as a file on your computer) is unmodifed.

However, there is one very handy way that you can use this overwriting trick. If your data isn't
formatted the right way (for example, R thinks a particular column is a categorical variable when in
reality it's a number), you can modify it using this mutate function. In our McDonald's data, we
probably want to treat Category as a factor rather than as a character vector. We can do that by
creating a "new" column named Category that is defined as just the existing Category column
wrapped up in the as.factor function. Because the "new" column has the same name as an
existing one, it'll just overwrite it.

menu <- menu %>%
 mutate(Category = as.factor(Category)) %>%
 print()

A tibble: 260 x 6
Category Item Oz Calories Fat Sugars
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Egg McMuffin 4.8 300 13 3
2 Breakfast Egg White Delight 4.8 250 8 3
3 Breakfast Sausage McMuffin 3.9 370 23 2
4 Breakfast Sausage McMuffin with Eg 5.7 450 28 2
5 Breakfast Sausage McMuffin with Eg 5.7 400 23 2
6 Breakfast Steak & Egg McMuffin 6.5 430 23 3
7 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26 3
8 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30 4
9 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20 3
10 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25 4
... with 250 more rows

Comparing the output to the previous one, we see that on the second line, right underneath the
Catefory column header, it has changed from <chr> to <fctr>. Note that we'll be using this
Category column as a factor in the next section, so I'm overwriting the menu dataframe entirely
with this modified version. In other words, that top line is menu <- menu %>% rather than just
menu %>%. The less than sign followed by the dash (which looks like a leftward-pointing arrow) is
the assignment operator and is what you use to create new variable names in R. Up until now, I've
only made temporary changes to the menu data, but because I want to keep this one for this
workshop, I'm going to overwrite it. Because assigning data to a variable doesn't automatically print
it out for me, I then pipe it to the print function. In fact, pretty much all of the tidyverse
commands in my code all end in the print function so I can make sure things look good every step
of the way.

So with just a couple of functions, namely mutate and select, we can easily add, remove, reorder,
and change the columns in our dataset. This modified dataset can then be piped into additional

orcid.org/0000-0002-9185-0048 16

functions that'll clean up your data even more. In the next section we'll see what other kinds of
changes we can do to your data.

4 CLEANING YOUR DATA

In the previous section, we've seen how to make relatively large changes to your dataframe, changes
that involve entire columns at the very least. In this section, we'll be able to zoom in a little bit and
make small tweaks to individual columns or sometimes just a few rows within a single column.
Specifically, we'll look at how to rename columns, rename specific factors within a column, and
then how to filter your data based on what's in the columns.

In base R, these are the kinds of things that are a lot harder than I feel like they should be. In fact, I
used to do most of this stuff in Excel because it was just too annoying to do in R. With tidyverse,
it's pretty easy to make these changes, so now I hardly work in Excel at all to be honest. Let's start
with renaming columns.

4.1 RENAMING COLUMNS

If you want to rename a column in tidyverse, you can just use the rename function. Inside of it,
you put the new name (without quotes), an equals sign, and then the old name in quotes.

menu %>%
 rename(name_of_food = "Item")

A tibble: 260 x 6
Category name_of_food Oz Calories Fat Sugars
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Egg McMuffin 4.8 300 13 3
2 Breakfast Egg White Delight 4.8 250 8 3
3 Breakfast Sausage McMuffin 3.9 370 23 2
4 Breakfast Sausage McMuffin with Eg 5.7 450 28 2
5 Breakfast Sausage McMuffin with Eg 5.7 400 23 2
6 Breakfast Steak & Egg McMuffin 6.5 430 23 3
7 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26 3
8 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30 4
9 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20 3
10 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25 4
... with 250 more rows

If you want to rename multiple columns, just do the same thing but with commas between each
pair:

menu %>%
 rename(name_of_food = "Item",
 group = "Category",

orcid.org/0000-0002-9185-0048 17

 serving_size = "Oz",
 Sugar = "Sugars")

A tibble: 260 x 6
group name_of_food serving_size Calories Fat Sugar
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Egg McMuffin 4.8 300 13 3
2 Breakfast Egg White Delight 4.8 250 8 3
3 Breakfast Sausage McMuffin 3.9 370 23 2
4 Breakfast Sausage McMuffin with Eg 5.7 450 28 2
5 Breakfast Sausage McMuffin with Eg 5.7 400 23 2
6 Breakfast Steak & Egg McMuffin 6.5 430 23 3
7 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26 3
8 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30 4
9 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20 3
10 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25 4
... with 250 more rows

It's really that simple. The code is clean, consise, easy to read, and easy and type. Just as pretty
much all tidyverse functions are.

To emphasize how handy this is, here's how I would have done the samething in base R:

menu$name_of_food <- menu$Item
menu$group <- menu$Category
menu$serving_size <- menu$Oz
menu$Sugar <- menu$Sugars
menu <- menu[c(8,7,9,4,5,10)]

First, I have to run a separate line of code for each column and it's not clear that I'm essentially
doing the same thing each time. Then, I need to fix the order of the columns again to get it back to
the original order, which like I mentioned before, is error-prone and hard to read. Plus I had to type
the name of my dataframe, menu, ten times! If I had had a longer name (like
mcdonalds_menu_items), it would have been crazy. Also, if I wanted to apply this to a different
dataset, I'd have to copy and paste the new name ten time, where as with rename, I just need to do
it once. It's crazy how much easier tidyverse makes things!

4.2 RELEVEL ING FACTORS

Renaming columns is one thing, but sometimes you'll need to change the data itself. With
numbers, it's not too hard because calculations are relatively straightforward, but with categorical
data (or basically anything with text), it gets tricky (See R for Data Science Chapter 15 on "Factors"
(http://r4ds.had.co.nz/factors.html)). Let's look at the Category column in our McDonalds data.

levels(menu$Category)

[1] "Beef & Pork" "Beverages" "Breakfast"
[4] "Chicken & Fish" "Coffee & Tea" "Desserts"
[7] "Salads" "Smoothies & Shakes" "Snacks & Sides"

orcid.org/0000-0002-9185-0048 18

So we have nine different categories. Looking through them, perhaps you want to rename "Beef &
Pork" to "Red Meat" and "Chicken & Fish" into "White Meat". Do to this we'll use a function in the
forcats package, which, like readxl is part of the tidyverse but is not automatically installed
when you load the tidyverse package. The forcats package is full of functions that work well for
categorical data.

library(forcats)

After you've got it installed and loaded, use the fct_recode, which has similar syntax to rename
to change certain values. Because we're using mutate, technically what we're doing is creating a
"new"" column called Category (thus overwriting it). The values of this column is what was
previously in the Category column only we're changing "Beef & Pork" to "Red Meat".

menu_temp <- menu %>%
 mutate(Category = fct_recode(Category, "Red Meat" = "Beef & Pork"))
levels(menu_temp$Category)

[1] "Red Meat" "Beverages" "Breakfast"
[4] "Chicken & Fish" "Coffee & Tea" "Desserts"
[7] "Salads" "Smoothies & Shakes" "Snacks & Sides"

Just like rename, you can do multiple changes in the same function:

menu_temp <- menu %>%
 mutate(Category = fct_recode(Category,
 "Red Meat" = "Beef & Pork",
 "White Meat" = "Chicken & Fish"))
levels(menu_temp$Category)

[1] "Red Meat" "Beverages" "Breakfast"
[4] "White Meat" "Coffee & Tea" "Desserts"
[7] "Salads" "Smoothies & Shakes" "Snacks & Sides"

With this function, it's easy to collapse factors down into fewer categories, if that's what you need
to do. Here, we're collapsing "Beef & Pork" and "Chicken & Fish" into a "Meats" category, we'll add
"Coffee & Tea" to a Beverages category, and we'll collapse "Desserts" and "Smoothies & Shakes" into
"Sweets".

menu_temp <- menu %>%
 mutate(Category = fct_recode(Category,
 "Meats" = "Beef & Pork",
 "Meats" = "Chicken & Fish",
 "Beverages" = "Coffee & Tea",
 "Sweets" = "Desserts",
 "Sweets" = "Smoothies & Shakes"))
levels(menu_temp$Category)

[1] "Meats" "Beverages" "Breakfast" "Sweets"
[5] "Salads" "Snacks & Sides"

orcid.org/0000-0002-9185-0048 19

In base R, this is a lot more complicated: you have to first allow the possibility for that column to
contain this new value (after changing it from a character vector to a factor), and then you need to
programatically find all the matching categories and change them one at a time. Several of these
steps are not intuitive and can cause great frustration to those who aren't super comfortable with R.

Turn it into a factor and allow for the new categories
menu$Category <- factor(menu$Category,
 levels=c(unique(menu$Category), "Meats", "Sweets
"))
Change the values
menu[menu$Category %in% c("Beef & Pork", "Chicken & Fish"),]$Category <- "Mea
ts"
menu[menu$Category == "Coffee & Tea",]$Category <- "Beverages"
menu[menu$Category %in% c("Desserts", "Smoothies & Shakes"),]$Category <- "Sw
eets"
Remove the old levels
menu <- droplevels(menu)

Notice how many times I had to type menu and how many times I had to type Category. I counted
11 and 8 respectively, not to mention typing "Meats" and "Sweets" twice. So much repetition
obfuscates what's actually going on. (You could probably cut this down using the with function,
but it seems to me like it complicates the code more rather than simplifying it.) With the
fct_recode function, you save a lot of typing and frustration because it takes care of all that for
you in a way that's so much easier in every way.

In fact, we can even make this even easier for you. If you're just collapsing a couple categories into
one (combining the two different meat categories into one), then it's not too bad to type "Meats"
twice in the tidyverse version. But if you have 30 different categories you want to collapse down,
it'll get tedious to type "Meats" over and over. For this reason, there's the fct_collapse function
(also from the forcats library), which will make it a bit easier to use. The syntax is pretty self-
explanatory in this example:

menu_temp <- menu %>%
 mutate(Category = fct_collapse(Category,
 "Meats" = c("Beef & Pork", "Chicken & Fi
sh"),
 "Beverages" = "Coffee & Tea",
 "Sweets" = c("Desserts", "Smoothies & Sha
kes")))
levels(menu_temp$Category)

[1] "Meats" "Beverages" "Breakfast" "Sweets"
[5] "Salads" "Snacks & Sides"

As you can see, with fct_collapse, you can just pass a list of all the old values instead of listing
them one at a time. It also works just fine with only one item ("Beverages", above), so you'd
probably be okay exclusively using fct_collapse.

orcid.org/0000-0002-9185-0048 20

4.3 FILTER ING

Finally, it's important to know how to filter your data based on these columns. Admittedly, the base
R function subset is just as succinct as the tidyverse equivalent (filter), so here they are for
comparison.

Base R version
menu_temp[menu_temp$Category == "Meats",]

Base R version using subset()
subset(menu_temp, Category == "Meats")

Tidyverse version
menu_temp %>%
 filter(Category == "Meats")

A tibble: 42 x 6
Category Item Oz Calories Fat Sugars
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Meats Big Mac 7.4 530 27 9
2 Meats Quarter Pounder with Che 7.1 520 26 10
3 Meats Quarter Pounder with Bac 8.0 600 29 12
4 Meats Quarter Pounder with Bac 8.3 610 31 10
5 Meats Quarter Pounder Deluxe 8.6 540 27 9
6 Meats Double Quarter Pounder w 10.0 750 43 10
7 Meats Hamburger 3.5 240 8 6
8 Meats Cheeseburger 4.0 290 11 7
9 Meats Double Cheeseburger 5.7 430 21 7
10 Meats Bacon Clubhouse Burger 9.5 720 40 14
... with 32 more rows

Either way, it's pretty simple. Except for the first one, which is longer and harder to read, all you
need to do is type the column you want to filter by, some sort of operator (==, <, >=, !=, etc.) and
then whatever value you want to subset by, in quotes. The above code selects only the menu items
that are in the newly created Meat category.

You can add additional filters by just putting a comma between them. The following code filters out
everything but the meats that are also greater than or equal to 11 ounces.

menu_temp %>%
 filter(Category == "Meats",
 Oz >= 11)

A tibble: 5 x 6
Category Item Oz Calories Fat Sugars
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Meats Premium McWrap Chicken & 11.1 630 32 7
2 Meats Premium McWrap Southwest 11.1 670 33 12
3 Meats Premium McWrap Southwest 11.2 520 20 10

orcid.org/0000-0002-9185-0048 21

4 Meats Chicken McNuggets (20 pi 11.4 940 59 0
5 Meats Chicken McNuggets (40 pi 22.8 1880 118 1

There are a couple more useful tricks when filtering data. What if you want to set a filter so that
you can keep things if either condition matches, you can use the | operator, just like in base R. This
code finds all Meat or Breakfast items that are greater than or equal to 11 ounces.

menu_temp %>%
 filter(Category == "Meats" | Category == "Breakfast",
 Oz >= 11)

A tibble: 9 x 6
Category Item Oz Calories Fat Sugars
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Breakfast Big Breakfast with Hotca 14.8 1090 56 17
2 Breakfast Big Breakfast with Hotca 15.3 1150 60 17
3 Breakfast Big Breakfast with Hotca 14.9 990 46 17
4 Breakfast Big Breakfast with Hotca 15.4 1050 50 18
5 Meats Premium McWrap Chicken & 11.1 630 32 7
6 Meats Premium McWrap Southwest 11.1 670 33 12
7 Meats Premium McWrap Southwest 11.2 520 20 10
8 Meats Chicken McNuggets (20 pi 11.4 940 59 0
9 Meats Chicken McNuggets (40 pi 22.8 1880 118 1

Again, with just two, it's not so bad, but if you've got a different dataset with data from all 50 states
and you want to filter out 30 of them, you'll have to type state == over and over. A more elegant
solution that is easier to read and easer to type is to use the %in% function. This is a base function
that essentially lets you use a list where a single string is normally used. It's a little bit unusual-
looking since it's got the percent signs, but it works just fine. I can accomplish the exact same thing
as the above code but with less typing if I use this:

menu_temp %>%
 filter(Category %in% c("Meats", "Breakfast"),
 Oz >= 11)

Note that we don't use the == sign anymore, and the list has to be wrapped up in c() with each
item separated by commas.

What if you want it the opposite way? What if you want to find all food items that are over 11
ounces that are not meat and breakfast items?

I believe it was a page on StackOverflow where someone asked that very thing. Several of the
responses showed that you can create a new function, let's call it "not in", which can be defined as
follows.

'%ni%' <- Negate('%in%')

When you run this, you've just created a new custom function, %ni% that you can now use:

orcid.org/0000-0002-9185-0048 22

menu_temp %>%
 filter(Category %ni% c("Meats", "Breakfast"),
 Oz >= 11)

A tibble: 144 x 6
Category Item Oz Calories Fat Sugars
<fctr> <chr> <dbl> <int> <dbl> <int>
1 Salads Premium Southwest Salad 12.3 450 22 12
2 Salads Premium Southwest Salad 11.8 290 8 10
3 Beverages Coca-Cola Classic (Small 16.0 140 0 39
4 Beverages Coca-Cola Classic (Mediu 21.0 200 0 55
5 Beverages Coca-Cola Classic (Large 30.0 280 0 76
6 Beverages Coca-Cola Classic (Child 12.0 100 0 28
7 Beverages Diet Coke (Small) 16.0 0 0 0
8 Beverages Diet Coke (Medium) 21.0 0 0 0
9 Beverages Diet Coke (Large) 30.0 0 0 0
10 Beverages Diet Coke (Child) 12.0 0 0 0
... with 134 more rows

I use this %ni% function so much that I sometimes forget it's not a base function. I define it at the
top of all my R scripts and use it all the time. It's super handy.

There are many, many more things you can do to clean your data. In this section I've only shown
the ones I end up using the most. But hopefully this will take care of a lot of the work that you need
to do.

5 RESHAPING YOUR DATA

So far in this workshop, we've seen the basics of tidyverse functions. Some of them make for more
elegant code than base R, but others are about teh same. In this section we'll completely reshape
how our dataframe is organized: something that as far as I know, is definitely not easy in R.

As I mentioned in my tweet at the beginning of this workshop, I have experienced a lot of
frustration trying to reshape my data. By this, I mean going from "tall" to "wide". What do I mean by
this?

In this section we'll look at a different dataset. This one is a very small one that contains acoustic
measurements of my own speech. Specifically, I said the words feel, fall, and fool and extracted
acoustic measurements at 5 points along each vowel's duration. They're saved as csv files on my
website, so you can load them directly.

I have the data organized in two different ways. Let's look at each one and see what those
differences are. This is what's called a "wide" format:

vowels_wide <- read_csv("http://joeystanley.com/data/vowels_wide.csv") %>%
 print()

orcid.org/0000-0002-9185-0048 23

A tibble: 3 x 6
word t_0.2 t_0.35 t_0.5 t_0.65 t_0.8
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 fall 515.54 479.96 491.71 459.01 479.61
2 feel 320.29 317.59 355.08 483.47 514.34
3 fool 296.76 303.73 299.21 299.48 296.11

As you can see, we have a table that is 6 columns wide and with only 3 rows. Each row represents
one word, with five columns representing those measurements across the five times in which those
measurements were taken. Here's the same dataset but in a "tall" format:

vowels_tall <- read_csv("http://joeystanley.com/data/vowels_tall.csv") %>%
 print()

A tibble: 15 x 3
word time Hz
<chr> <dbl> <dbl>
1 fall 0.20 515.54
2 fall 0.35 479.96
3 fall 0.50 491.71
4 fall 0.65 459.01
5 fall 0.80 479.61
6 feel 0.20 320.29
7 feel 0.35 317.59
8 feel 0.50 355.08
9 feel 0.65 483.47
10 feel 0.80 514.34
11 fool 0.20 296.76
12 fool 0.35 303.73
13 fool 0.50 299.21
14 fool 0.65 299.48
15 fool 0.80 296.11

Here, there's one row for each acoustic measurement so that each word is spread acros five rows.
This dataset is considered "tall" because there are many more rows than columns, giving the
impression of a tall rectangle when you view it. (Note that depending on the size of your dataset,
you may have many more rows than columns, regardless of how wide you spread out your data. But
the principle applies that you can make your table relatively wider and taller when you spread out
certain variables.)

Why are there different ways of storing the data? It depends on the research question you're asking.
If you're interested in each word, you might want to keep the extra-wide format so that each row
represents a word. If you're interested in each acoustic measurement individually, you might want
to use the tall version.

It's good to know how to convert your data from wide to tall and vice versa. Not only because it lets
you look at it in different ways, but because certain kinds of visualizations require one or the other.

orcid.org/0000-0002-9185-0048 24

5.1 GOING FROM WIDE TO TALL

So our first step is going from the wide format to the tall format using gather.

The way gather works is you need three arguments. First, is the key, which is some arbitrary
name that'll be given to the new column we're going to create. Next is the value argument, which
is the name of the column you're creating that contains the information. Finally, you just name the
columns that you want to be combined into one.

In this case, we'll create a column called "time" that will contain the time values (0.2, 0.35, 0.5,
0.65, and 0.8). We'll create a new column called "Hz" since these measurements are measured as
Hertz (a unit of frequency). And to specify the columns, we could do t_0.2, t_0.35, t_0.5,
t_0.65, t_0.8 or better yet t_0.2:t_0.8, but since we just want everything except the word
column, I'll just specify that I don't want the word column used.

vowels_wide %>%
 gather(key = "time", value = "Hz", -word)

A tibble: 15 x 3
word time Hz
<chr> <chr> <dbl>
1 fall t_0.2 515.54
2 feel t_0.2 320.29
3 fool t_0.2 296.76
4 fall t_0.35 479.96
5 feel t_0.35 317.59
6 fool t_0.35 303.73
7 fall t_0.5 491.71
8 feel t_0.5 355.08
9 fool t_0.5 299.21
10 fall t_0.65 459.01
11 feel t_0.65 483.47
12 fool t_0.65 299.48
13 fall t_0.8 479.61
14 feel t_0.8 514.34
15 fool t_0.8 296.11

The result is essentially the same as the tall format. The only difference is the order and the fact
that the time column has that t_ before each value. Here's the code for doing that, but I'll let you
figure out how that's done.

vowels_wide %>%
 gather(key = "time", value = "Hz", -word) %>%
 separate(time, into = c("throw_away", "time"), sep="_") %>%
 select(-throw_away)

A tibble: 15 x 3
word time Hz
* <chr> <chr> <dbl>
1 fall 0.2 515.54

orcid.org/0000-0002-9185-0048 25

2 feel 0.2 320.29
3 fool 0.2 296.76
4 fall 0.35 479.96
5 feel 0.35 317.59
6 fool 0.35 303.73
7 fall 0.5 491.71
8 feel 0.5 355.08
9 fool 0.5 299.21
10 fall 0.65 459.01
11 feel 0.65 483.47
12 fool 0.65 299.48
13 fall 0.8 479.61
14 feel 0.8 514.34
15 fool 0.8 296.11

So converting something into a tall format is useful because it allows you to make line plots in
ggplot, which are otherwise impossible. The way line plots work is that you need one column in
your table that represents a unique value for each line you want to draw.

vowels_tall %>%
 ggplot(aes(x=time, y=Hz, group=word, color=word)) +
 geom_line() +
 theme_bw()

Since we just have three words and five points we want to connect for each one, we can use the
word column as for the group argument. If we had additional lines from any one word or if we had
multiple observations of the same word (with 5 points each), we'd have to generate a unique ID
column. Ask me for details if you would like do know how.

These line plots are really useful for comparing change across some variable like time. As fantastic
as they are, they take some work because your data has to be in a tall format. So converting from
wide to tall is a really useful skill to have.

orcid.org/0000-0002-9185-0048 26

5.2 GOING FROM TALL TO WIDE

So what if you have some data that is already tall and you need to convert it into a wide format?
You can use spread.

With spread, the syntax is similar to gather. The key argument is where you specify which
column contains the values that will become the colum names. In this case it's the time column
since we want to spread each point in time into its own column. The value argument contains the
column in the wide format that contains what you want to fill those cells. In this case, it's the Hz
column.

vowels_tall %>%
 spread(key = time, value = Hz, sep = "_") %>%
 print()

A tibble: 3 x 6
word time_0.2 time_0.35 time_0.5 time_0.65 time_0.8
* <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 fall 515.54 479.96 491.71 459.01 479.61
2 feel 320.29 317.59 355.08 483.47 514.34
3 fool 296.76 303.73 299.21 299.48 296.11

The result is a table strikingly similar to the wide table we saw earlier. The addition of the sep
argument makes it so that the column name "time" is appended at the start of each column followed
by an underscore (which I specified). This makes it so that the resulting table doesn't have column
names that are numbers, which are tricky to work with.

This section has been a quick run-through of how to convert things from wide to tall. In my
experience, it has been frustrating to learn how it's done, but once you get the hang of it, it's
incredibly useful and powerful. For more information on spreading and gathering data, see Chapter
12 of R for Data Science (http://r4ds.had.co.nz/tidy-data.html).

6 MERGING

The last thing we'll cover in this workshop is merging. Sometimes you have two datasets that are
related in some way and you want to combine them together. For this example, we'll use a simple
dataset, the snooze one from before which should still be on your computer. As a reminder, this is
a simulated dataset that contains information about how many minutes it took someone to get out
of bed for an entire year. There are just two columns, the minutes and the day of the week (which is
represented by the numbers 1–7).

snooze <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx") %>%
 print()

A tibble: 364 x 2
minutes day

orcid.org/0000-0002-9185-0048 27

<dbl> <dbl>
1 0 1
2 0 3
3 0 2
4 0 2
5 1 5
6 1 3
7 1 3
8 1 5
9 1 2
10 1 4
... with 354 more rows

We can view the general sleep patterns here by creating a simple scatterplot. I'm going to add some
jitter to the plot which will randomly nudge the points around from left to right a little bit within
their column. I'll also add a violin plot to see the overall shape of the distribution (which was covered
in the previous workshop).

ggplot(snooze, aes(x=day, y=minutes, group=day)) +
 geom_violin() +
 geom_jitter() +
 theme_bw()

As we can see, during most days, this person slept in maybe 4 or 5 minutes a day. But on days 6
and 7 of each week (presumably Satuday and Sunday), they slept in a little longer, maybe around 8
or so minutes.

Our task is to convert the 1–7 into "Monday", "Tuesday", "Wednesday", etc. How can we do this?
One solution is to use the fct_recode that was introduced earlier:

snooze %>%
 mutate(day = as.factor(day),
 day = fct_recode(day, "Monday" = "1", "Tuesday" = "2", "Wednesday" =
"3",

orcid.org/0000-0002-9185-0048 28

 "Thursday" = "4", "Friday" = "5", "Saturday" = "6",
"Sunday" = "7"))

A tibble: 364 x 2
minutes day
<dbl> <fctr>
1 0 Monday
2 0 Wednesday
3 0 Tuesday
4 0 Tuesday
5 1 Friday
6 1 Wednesday
7 1 Wednesday
8 1 Friday
9 1 Tuesday
10 1 Thursday
... with 354 more rows

With just seven possible levels, this works out fine. But imagine a scenario where we have a very
long list of unique values, like country codes, and we're trying to convert it into the full country
name. That would turn out to be a really big chunk of code and would be a pain to debug if there
were typos or something.

Instead, we can create a lookup table like we have in Excel. This table will just be 2 columns, the
number and the day of the week, and one row for each day.

days <- tibble(
 id_number = 1:7,
 spelled = c("Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday", "Sunday")) %>%
 print()

A tibble: 7 x 2
id_number spelled
<int> <chr>
1 1 Monday
2 2 Tuesday
3 3 Wednesday
4 4 Thursday
5 5 Friday
6 6 Saturday
7 7 Sunday

We can merge these two toegher using base R merge, or in tidyverse with left_join. Here, we
supply the two tables we want to merge (the first one is usually piped in), and the crucial part is
that we include the by argument which contains the name of the columns we want to match up, in
quotes. If both have the exact same name, great, but in our case we have to specify both like so:

Base R
merge(snooze, days, by.x="day", by.y="id_number")

orcid.org/0000-0002-9185-0048 29

Tidyverse
snooze %>%
 left_join(days, by=c("day" = "id_number"))

A tibble: 364 x 3
minutes day spelled
<dbl> <dbl> <chr>
1 0 1 Monday
2 0 3 Wednesday
3 0 2 Tuesday
4 0 2 Tuesday
5 1 5 Friday
6 1 3 Wednesday
7 1 3 Wednesday
8 1 5 Friday
9 1 2 Tuesday
10 1 4 Thursday
... with 354 more rows

Now we have a new dataset that contains the spelled out versions of the days of the week, which is
a lot easier to read.

I've only scratched the surface when it comes to merges and joins. I encourage you to learn more
about them (with the help of some useful visualizations) by reading the Chapter 13 of R for Data
Science, which is called "Relational Data" and can be found here: http://r4ds.had.co.nz/relational-
data.html#mutating-joins.

7 WRAPPING UP

This workshop has covered a lot of information. As a review, here're the kinds of things we've
covered:

1. We saw how to get your data into R using read_csv and read_excel and how these
functions are a bit more efficient than the base R equivalents.

2. We looked at how to tranform your data. First we started off by going over the pipe (%>%) and
how useful it can be. We then saw how to remove and reorder columns using select and to
add and modify columns using mutate.

3. Next was some tricks on how to clean up your data. Using rename you can change the column
name; using relevel you can change individual levels in your categorical data; andusing
filter you can quickly make subsets of your data.

4. Then we looked at how to reshape your data from wide to tall or from tall to wide formats.

orcid.org/0000-0002-9185-0048 30

5. We ended on how to merge two datasets together and in particular how to think of merging as
a lookup table in Excel.

This is a lot of information that I've thrown at you at once. But I've provided relevant reading so you
can go in and learn more at your own pace. Hopefully this workshop has given you some new skills
that will be useful for you and your research, but more importantly I hope it has opened your eyes a
little bit to the kinds of ways you can transform your data, which ultimately will let you use your
data in different ways and to lead you to new research questions.

