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1 INTRODUCTION 

Working with data can be super frustrating. I've been there. In fact, this tweet from just under a 
year ago, only hints at the frustration I was feeling at the time. 

I'm pretty sure I had spent 6–8 hours working on transforming my data from "wide" to "tall" to get it 
to work in some visualization (we'll get to what that means later). I don't even think I ended up 
getting it done in the end, and I found an alternative solution. 

That was about a year ago, and now I'm giving a workshop on this stuff. This just goes to show that 
in less than a year you can learn to do this stuff effectively in your own code as well. 

1.1  WHAT IS  THE T IDYVERSE? 

According to its website (tidyverse.org), "The tidyverse is an opinionated collection of R packages 
designed for data science. All packages share an underlying philosophy and common APIs." Let's 
break that down. 

1. It's a collection of R packages—When you install the tidyverse package, all you're doing is 
installing several other packages that fall its umbrella. Some of the packages that are part of 
tidyverse include dplyr, tidyr, and ggplot2, which are among the most popular R 
packages. There are others that are super useful like readxl, forcats, and stringr that are 
part of the tidyverse, but don't come installed automatically with the tidyverse package, so 
you'll have to lead them explicitly. 

2. They share an underlying philosophy and common APIs—This is one of the reasons that 
makes the tidyverse so great: all the packages seamlessly integrate and work together 
harmoniously. There's nothing worse than having to modify your dataframe in some way in 
order to get it to work for some function. With the tidyverse, you can jump from one of its 
packages to another and send data around and nothing will ever get mad at you. 

3. They are designed for data science—A lot of what R can do is for statistical modeling on your 
data. Tidyverse doesn't do a lot of statistics, but it can help you every step of the way 
otherwise. You can read in your data, make any modifications, and visualize it with no 
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problem. When it actually comes to fancy statistical models though, you'll have to find more 
specialized packages. This is not to say that the tidyverse is deficient in any way: reshaping and 
tidying your data is no small feat and the tidyverse makes this a lot easier. 

4. They are opinionated—The author of these packages, Hadley Wickham, is very open about 
how they are created, and says that this is just one way to work with data in R. You're certainly 
welcome to work with your data another way, but using the tidyverse is not the only solution: 
it's just Hadley's opinion of how it should be best done. 

There's a ridiculous amount to cover with this suite. Just ggplot2 alone would take a hundred 
workshops to cover everything. The possibilities are nearly endless and I obviously can't teach you 
everything in just a single 1-hour workshop. To give you an idea of what functions in the tidyverse 
can do, here's a brief summary of some of its packages. 

1. ggplot2 is a very popular suite for visualizing data. Unlike other visualizations you might do, 
ggplot2 allows for pretty much infinite customizability in your plots, which is really handy if 
you have nitpicky details you want to control. 

2. dplyr lets you manipulate your data by doing things like adding and removing columns, 
filtering and subsetting your data, and summarizing your data (such as getting the average of 
some value per group within your data). 

3. tidyr lets you reshape your data from "wide" to "tall" format. It's like reshape and reshape2 
(also written by Hadley Wickham), but in my opinion it does the job better with code that's 
easier to interpret. 

4. readxl makes allows you to read in Excel files directly into R without the need to convert to 
.csv first 

5. forcats comes with a bunch of functions for working with categorical data. 

6. stringr makes it easier to work with text in your data. 

There are many other packages that are part of the tidyverse that handle more specific tasks like 
specific data types. There are also ones that are more for the R programmer and can help you 
publish your R scripts into your own libraries. For now, I'll stick with just the basics, but be aware 
that there is much, much more. For more information on what's possible, check out the book R for 
Data Science by Garrett Grolemund and Hadley Wickham (available for free viewing at 
http://r4ds.had.co.nz), which goes into more detail about what functions in the tidyverse can do. 
Much of this workshop is based on a couple chapters from that book. 

1.2  INSTALLATION 

Just like any other R package, installing tidyverse is straightforward. 

install.packages("tidyverse") 
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You only need to run this once and then it's on your computer. This doesn't make it automatically 
available to R though, so you'll need to explicitly tell R you'll be working with the package, using 
the library function. 

There will be some warning messages, but you can probably safely ignore those. 

Side note, as of about two days ago (November 8, 2017), tidyverse updated to a new version 
(v1.2.0). Looking through the release notes, the changes look mostly minor so it shouldn't affect 
the code in this workshop, which was prepared using an older version of the package (v1.1.1). 

2 GETTING DATA INTO R 

The first step to any project in R is to get your data into R. For this we'll make use of two functions. 
The first is read_csv and is a part of the readr package, which was automatically installed and 
loaded when you loaded tidyverse. For this section I'll be drawing from Chapter 11 "Data Import" 
from R for Data Science, which can be read here: http://r4ds.had.co.nz/data-import.html. 

2.1  CSV F ILES 

If you've read data into R before, you've probably used the standard read.csv (with a period) 
function. This one works just fine and you can get by perfectly well with it. However, tidyverse's 
read_csv (with an underscore), has some additional perks that the standard function doesn't come 
with. To show the first one, let's go ahead and read in some data. This data contains all the 
McDonalds menu items as well as some basic nutritional information and was downloaded for free 
at Kaggle.com. You can download it directly from my website using this code: 

menu <- read_csv("http://joeystanley.com/data/menu.csv") 

## Parsed with column specification: 
## cols( 
##   Category = col_character(), 
##   Item = col_character(), 
##   Oz = col_double(), 
##   Calories = col_integer(), 
##   Fat = col_double(), 
##   Sugars = col_integer() 
## ) 

The first perk of read_csv is that it gives you some output showing you how it parsed each 
column of your spreadsheet. Not all data should be treated the same: numbers are very different 
from text, and R (as well as you) should be aware of what data types are contained in your file so 
that it (and you) can work with it the best way possible. There are some heuristics that determine 
how read_csv parses your data which we won't get into here, but it's nice to see what the final 
result was just to make sure that numbers get treated as numbers, text as text, etc. Later in this 
workshop we'll see one way to change it in case the function got something wrong. 
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The second perk of read_csv is that it turns your data into what's called a "tibble". A tibble is 
tidyverse's version of a dataframe. Essentially, you can think of it as just a dataframe, but again, 
with some additional perks. One major difference between dataframes and tibbles is when you print 
them. When you print a regular dataframe, it'll vomit out everything. You get all rows (even if there 
are many of them) and all columns, which can be hard to read if your screen isn't wide enough to 
display them since they'll spill over into multiple rows. Here's our menu data printed out as a 
dataframe. 

menu.df <- as.data.frame(menu) 
menu.df 

##     Category                                                          Item 
## 1  Breakfast                                                  Egg McMuffin 
## 2  Breakfast                                             Egg White Delight 
## 3  Breakfast                                              Sausage McMuffin 
## 4  Breakfast                                     Sausage McMuffin with Egg 
## 5  Breakfast                              Sausage McMuffin with Egg Whites 
## 6  Breakfast                                          Steak & Egg McMuffin 
## 7  Breakfast                 Bacon, Egg & Cheese Biscuit (Regular Biscuit) 
## 8  Breakfast                   Bacon, Egg & Cheese Biscuit (Large Biscuit) 
## 9  Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit) 
## 10 Breakfast   Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit) 
##     Oz Calories Fat Sugars 
## 1  4.8      300  13      3 
## 2  4.8      250   8      3 
## 3  3.9      370  23      2 
## 4  5.7      450  28      2 
## 5  5.7      400  23      2 
## 6  6.5      430  23      3 
## 7  5.3      460  26      3 
## 8  5.8      520  30      4 
## 9  5.4      410  20      3 
## 10 5.9      470  25      4 

I've truncated the output to save space, but on your screen you'll see that this displays the entire 
contents of the dataframe. When we print the tibble version, it's a lot shorter. 

menu 

## # A tibble: 260 x 6 
##     Category                                                          Item 
##        <chr>                                                         <chr> 
##  1 Breakfast                                                  Egg McMuffin 
##  2 Breakfast                                             Egg White Delight 
##  3 Breakfast                                              Sausage McMuffin 
##  4 Breakfast                                     Sausage McMuffin with Egg 
##  5 Breakfast                              Sausage McMuffin with Egg Whites 
##  6 Breakfast                                          Steak & Egg McMuffin 
##  7 Breakfast                 Bacon, Egg & Cheese Biscuit (Regular Biscuit) 
##  8 Breakfast                   Bacon, Egg & Cheese Biscuit (Large Biscuit) 



orcid.org/0000-0002-9185-0048 6 

##  9 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit) 
## 10 Breakfast   Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit) 
## # ... with 250 more rows, and 4 more variables: Oz <dbl>, Calories <int>, 
## #   Fat <dbl>, Sugars <int> 

When you look at a tibble, you only peek at the data. You get the first 10 rows and only as many 
columns as can fit on your screen without spilling over into a new column. If there are additional 
columns, they're lised at the bottom. You also get to see what datatype each column is at the top of 
each column below the column names. Ths printing feature makes it easy to examine just a portion 
of your data without flooding your R Console. 

Finally, using read_csv is actually about 10 times faster than the regular read.csv function. If 
you work with very large datasets, this is a very good thing. Furthermore, if it does take more than 
about five seconds to read in your file, you'll actually get a little progress bar down in your R 
Console saying how much it's done and how long it has taken. This is nice to see so you know that 
R is making progress and didn't crash. 

Side note, since the menu items are so long, I'm going to truncate it for display purposes only. You 
don't have to do this. 

menu$Item <- str_sub(menu$Item, 1, 24) 
head(menu) 

## # A tibble: 6 x 6 
##    Category                     Item    Oz Calories   Fat Sugars 
##       <chr>                    <chr> <dbl>    <int> <dbl>  <int> 
## 1 Breakfast             Egg McMuffin   4.8      300    13      3 
## 2 Breakfast        Egg White Delight   4.8      250     8      3 
## 3 Breakfast         Sausage McMuffin   3.9      370    23      2 
## 4 Breakfast Sausage McMuffin with Eg   5.7      450    28      2 
## 5 Breakfast Sausage McMuffin with Eg   5.7      400    23      2 
## 6 Breakfast     Steak & Egg McMuffin   6.5      430    23      3 

2.2  EXCEL F ILES 

In the Intro to R Workshop, I said that it's possible to load Excel files directly into R. This is 
possible thanks to the read_excel function which is in the readxl package. This package is part 
of the tidyverse, but does not come standard in the tidyverse library, so you'll have to load it 
explicitly (it should be installed already). 

library(readxl) 

The syntax of read_excel is very similar to read_csv (a trend you'll notice over and over in the 
tidyverse). All you need to do is specify the path to the file itself. In the case of Excel files, you can't 
read them directly from a website like you can with csv files, so you'll have to download the data 
(just go to http://joeystanley.com/data/snoozing.xlsx and it'll automatically download) and then 
load it from your computer from wherever you saved your file. 

snooze <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx") 
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This file contains some fake data I created on how sleeping patterns. We'll get to it later in the 
workshop. The crucial thing now is that it's an Excel file and it can be read in directly into R which 
is pretty cool. 

By default, this reads in the first sheet of the Excel file. You can change this by adding the sheet 
argument and providing either the name of the sheet, or the sheet number. This particular file 
contains two sheets: the first has all the data and the second is nonsense. We can specify that we 
want the second sheet (called "blank") by indicating it: 

blank <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx",  
                       sheet="blank") 

The perks of using read_excel are essentially the same as using read_csv: your data is saved as a 
tibble and it's much faster. Personally, I love this function. I used to work in Excel to prepare my 
data, but then every time I wanted to make a change, I had to edit the Excel file and then save it as 
a csv, and then read it into R. It was just too many steps. Now, I can work with Excel directly and 
bypass the csv step entirely. 

There is much more that you can do with reading data into R, not only with just those two 
functions, but with many other specialized functions in readr and readxl, including those for 
reading in specific data formats. For example, you can specify column names or column types as 
you read it in so you don't have to change them later. I'll let you explore those on your own. 

3 TRANSFORMING YOUR DATA 

Now that you've got your data loaded in, you'll proably need to do some processing before moving 
on to analysis. In my experience, my R code always starts off with many lines of preprocessing to 
make sure everything is nice and clean and consistently formatted before moving on to the statistics 
and visualizations. 

What do I mean by "processing"? Well, it's likely that your data isn't exactly the way it needs to be 
for analysis. Maybe the column names aren't right, or a number that's supposed to be a number is 
actually being treated like text, or you may want to add, remove, or reorder columns entirely. Even 
if your data is pristine, you may have to do set a reference level for categorical data or filter the data 
in some way. All of this can be done using functions in the dplyr package, one of the core 
tidyverse packages. I'll cover some basics, but you can read more about the topics in this section 
R for Data Science chapters 18 on Pipes (http://r4ds.had.co.nz/pipes.html), and Chapter 5 "Data 
Transformation" (http://r4ds.had.co.nz/transform.html) 

3.1  PIP ING 

Before we move on, I want to pause and introduce some tidyverse syntax. To explain how it's used, 
let's say we want to see the McDonalds menu items. We could split this up into two steps, reading 
it in and then printing it: 



orcid.org/0000-0002-9185-0048 8 

menu <- read_csv("http://joeystanley.com/data/menu.csv") 
print(menu) 

## # A tibble: 260 x 6 
##     Category                     Item    Oz Calories   Fat Sugars 
##        <chr>                    <chr> <dbl>    <int> <dbl>  <int> 
##  1 Breakfast             Egg McMuffin   4.8      300    13      3 
##  2 Breakfast        Egg White Delight   4.8      250     8      3 
##  3 Breakfast         Sausage McMuffin   3.9      370    23      2 
##  4 Breakfast Sausage McMuffin with Eg   5.7      450    28      2 
##  5 Breakfast Sausage McMuffin with Eg   5.7      400    23      2 
##  6 Breakfast     Steak & Egg McMuffin   6.5      430    23      3 
##  7 Breakfast Bacon, Egg & Cheese Bisc   5.3      460    26      3 
##  8 Breakfast Bacon, Egg & Cheese Bisc   5.8      520    30      4 
##  9 Breakfast Bacon, Egg & Cheese Bisc   5.4      410    20      3 
## 10 Breakfast Bacon, Egg & Cheese Bisc   5.9      470    25      4 
## # ... with 250 more rows 

But that seems a little repetitive. With menu it's not so bad because it's small name, but if you've got 
some long name that's similar to other dataframes in your script, it could get annoying. It's like 
listening to someone never using a pronoun and saying a peron's name every sentence: "Joey's my 
friend. Joey and I went to the store and then Joey's phone fell out of Joey's pocket…". Wouldn't it be 
nice if R could sort of "remember" what we're working with? 

For this reason, we have the pipe. This little function is one of the most useful features of the 
tidyverse and it looks like this: %>%. What the pipe does is it takes the output of the function on the 
left and feeds it to the right function as its first argument. 

So if we wanted to read in the McDonalds menu data and then print it, we can pipe the results of 
read_csv into the print function and take care of this all in one go. The following block is does 
the exact same thing as the previous one. 

menu <- read_csv("http://joeystanley.com/data/menu.csv") %>% 
    print() 

Notice that in the print function, you don't need to put the same of the dataframe in. Basically, the 
pipe can be read as, "and then with this, do…". So "read this cvs file and then with that, print it". 

There are lots of benefits to using the pipe. First, it saves on typing. You only have to type the name 
of the dataframe (menu) once. This is especially nice if you have some long dataframe name. 
Second, when you execute the command, it'll interpret both lines as a single line, so it saves a 
couple cliks/keystrokes, etc. And with the pipe, you're not limited to just two functions, you can 
stack as many of them as you want to make what looks like a "paragraph" of code that all gets 
treated as one. More on that in a sec. Finally, because it's all treated as one command, you don't 
need to come up with names for the various intermediate steps (which are confusing if you have 
too many, and get very long) like menu.clean or menu.clean.renamed or menu3. 
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The reason why this works is because in pretty much all the functions in the tidyverse, the first 
argument is data=.... Since the pipe takes the thing on the left and makes it the first argument on 
the right, if that first argument is data, then it'll fill that slot perfectly. 

3.2  REMOVING COLUMNS 

So when we look at our McDonald's data, we see that the Item name is super wide (unless you 
truncated it like I did). It was so wide that when we printed anything, we didn't see any of the other 
columns. We could just remove it entirely, which would free things up. We can do this with the 
select function. 

With select, as long as we're piping some data into it, all we need to do is specifiy which columns 
we want to keep, and it'll keep them. So if we wanted to just look at the Calories and Sugars, we 
could do that easily: 

menu %>% 
    select(Calories, Sugars) 

## # A tibble: 260 x 2 
##    Calories Sugars 
##       <int>  <int> 
##  1      300      3 
##  2      250      3 
##  3      370      2 
##  4      450      2 
##  5      400      2 
##  6      430      3 
##  7      460      3 
##  8      520      4 
##  9      410      3 
## 10      470      4 
## # ... with 250 more rows 

Perfect, with just a simple line of code, we were able to do that. Notice that we don't even need 
quotes around the column names, which saves some typing. If we wanted to look at everything 
except the menu item name, we just put a minus sign before it: 

menu %>% 
    select(-Item) 

## # A tibble: 260 x 5 
##     Category    Oz Calories   Fat Sugars 
##        <chr> <dbl>    <int> <dbl>  <int> 
##  1 Breakfast   4.8      300    13      3 
##  2 Breakfast   4.8      250     8      3 
##  3 Breakfast   3.9      370    23      2 
##  4 Breakfast   5.7      450    28      2 
##  5 Breakfast   5.7      400    23      2 
##  6 Breakfast   6.5      430    23      3 
##  7 Breakfast   5.3      460    26      3 
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##  8 Breakfast   5.8      520    30      4 
##  9 Breakfast   5.4      410    20      3 
## 10 Breakfast   5.9      470    25      4 
## # ... with 250 more rows 

It removes that column. 

What if we wanted the Oz, Colaries, Fat, and Sugars column and wanted to leave off Category and 
Item? You could add minus signs before each one you want to remove: 

menu %>% 
    select(-Category, -Item) 

## # A tibble: 260 x 4 
##       Oz Calories   Fat Sugars 
##    <dbl>    <int> <dbl>  <int> 
##  1   4.8      300    13      3 
##  2   4.8      250     8      3 
##  3   3.9      370    23      2 
##  4   5.7      450    28      2 
##  5   5.7      400    23      2 
##  6   6.5      430    23      3 
##  7   5.3      460    26      3 
##  8   5.8      520    30      4 
##  9   5.4      410    20      3 
## 10   5.9      470    25      4 
## # ... with 250 more rows 

Alternatively, if the columns you want to keep are in order, you can just print the first and last one 
and put a colon (:) between them, and it'll get everything in between: 

menu %>% 
    select(Oz:Sugars) 

## # A tibble: 260 x 4 
##       Oz Calories   Fat Sugars 
##    <dbl>    <int> <dbl>  <int> 
##  1   4.8      300    13      3 
##  2   4.8      250     8      3 
##  3   3.9      370    23      2 
##  4   5.7      450    28      2 
##  5   5.7      400    23      2 
##  6   6.5      430    23      3 
##  7   5.3      460    26      3 
##  8   5.8      520    30      4 
##  9   5.4      410    20      3 
## 10   5.9      470    25      4 
## # ... with 250 more rows 

This is analgous to the R syntax of creating sequential numbers (a list from 1 to 10 would be simply 
1:10). 
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So using the select function is super useful because you can very quickly pick out the columns 
you want to see or remove columns you don't need. The code is easy and intuitive to write and it's 
clear from reading it what it's doing. That's what makes tidyverse so useful. 

3.3  REORDERING COLUMNS 

You can also use select to reorder your columns. Just put the column names in whatever order 
you want and that's how they'll appear: 

menu %>% 
    select(Oz, Sugars, Fat, Calories) 

## # A tibble: 260 x 4 
##       Oz Sugars   Fat Calories 
##    <dbl>  <int> <dbl>    <int> 
##  1   4.8      3    13      300 
##  2   4.8      3     8      250 
##  3   3.9      2    23      370 
##  4   5.7      2    28      450 
##  5   5.7      2    23      400 
##  6   6.5      3    23      430 
##  7   5.3      3    26      460 
##  8   5.8      4    30      520 
##  9   5.4      3    20      410 
## 10   5.9      4    25      470 
## # ... with 250 more rows 

To accomplish the same thing in base R, as far as I know you'd have to specify the columns by 
numbers (the above code would be something like menu <- menu[c(3,6,5,4),]). This is super 
annoying for lost of reasons: 1) you have to figure out what number each column is, which is not 
easy if you have many columns; 2) if your dataset changes, your code breaks because column 3 
might not always be the Oz column; 3) it's not clear from reading the code what columns you're 
keeping. Tidyverse solves all these problems by just using the names instead of numbers. 

An alternative in base R is to use the subset function, which behaves very similarly to select. 
Here's a base R equivalent: 

# Base R equivalent 
subset(menu, select=c(Oz, Sugars, Fat, Calories)) 

## # A tibble: 260 x 4 
##       Oz Sugars   Fat Calories 
##    <dbl>  <int> <dbl>    <int> 
##  1   4.8      3    13      300 
##  2   4.8      3     8      250 
##  3   3.9      2    23      370 
##  4   5.7      2    28      450 
##  5   5.7      2    23      400 
##  6   6.5      3    23      430 
##  7   5.3      3    26      460 
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##  8   5.8      4    30      520 
##  9   5.4      3    20      410 
## 10   5.9      4    25      470 
## # ... with 250 more rows 

With just a few columns, it's not a big deal to type everything in tidyverse, but if you have a 
spreadsheet with many columns, it can still get tedious, especially if all you want to do is move one 
column around. For this reason, dplyr comes with the everything function, which is shorthand 
for "all other variables."" So if you wanted to move the Sugars column to the front, you can just 
type that column name and then everything(): 

menu %>% 
    select(Sugars, everything()) 

## # A tibble: 260 x 6 
##    Sugars  Category                     Item    Oz Calories   Fat 
##     <int>     <chr>                    <chr> <dbl>    <int> <dbl> 
##  1      3 Breakfast             Egg McMuffin   4.8      300    13 
##  2      3 Breakfast        Egg White Delight   4.8      250     8 
##  3      2 Breakfast         Sausage McMuffin   3.9      370    23 
##  4      2 Breakfast Sausage McMuffin with Eg   5.7      450    28 
##  5      2 Breakfast Sausage McMuffin with Eg   5.7      400    23 
##  6      3 Breakfast     Steak & Egg McMuffin   6.5      430    23 
##  7      3 Breakfast Bacon, Egg & Cheese Bisc   5.3      460    26 
##  8      4 Breakfast Bacon, Egg & Cheese Bisc   5.8      520    30 
##  9      3 Breakfast Bacon, Egg & Cheese Bisc   5.4      410    20 
## 10      4 Breakfast Bacon, Egg & Cheese Bisc   5.9      470    25 
## # ... with 250 more rows 

Again, this is super useful for when you have tons of columns and only need to move a couple up 
towards the front. 

So the select function is great because it can take care of a lot of stuff like removing and 
reordering columns all at once. The syntax is intuitive and clear. And, as it turns out, the function 
"returns" your modified dataframe, so you can then pipe it onto other tidyverse functions for 
additional processing. Pretty cool. 

3.4  ADDING COLUMNS 

We've seen how to remove and reorder columns with select, so how do we add columns? Let's say 
we want to take our McDonalds data and create a new column. We have information about the 
weight of the item (in ounces) and both the fat and sugar content. What if we wanted to look at the 
most sugar per ounce? For this, we can use the mutate function, which creates a new column and 
tags it onto the end. 

menu %>% 
    mutate(sugar_per_oz = Sugars / Oz) %>% 
    select(sugar_per_oz, everything()) 



orcid.org/0000-0002-9185-0048 13 

## # A tibble: 260 x 7 
##    sugar_per_oz  Category                     Item    Oz Calories   Fat 
##           <dbl>     <chr>                    <chr> <dbl>    <int> <dbl> 
##  1    0.6250000 Breakfast             Egg McMuffin   4.8      300    13 
##  2    0.6250000 Breakfast        Egg White Delight   4.8      250     8 
##  3    0.5128205 Breakfast         Sausage McMuffin   3.9      370    23 
##  4    0.3508772 Breakfast Sausage McMuffin with Eg   5.7      450    28 
##  5    0.3508772 Breakfast Sausage McMuffin with Eg   5.7      400    23 
##  6    0.4615385 Breakfast     Steak & Egg McMuffin   6.5      430    23 
##  7    0.5660377 Breakfast Bacon, Egg & Cheese Bisc   5.3      460    26 
##  8    0.6896552 Breakfast Bacon, Egg & Cheese Bisc   5.8      520    30 
##  9    0.5555556 Breakfast Bacon, Egg & Cheese Bisc   5.4      410    20 
## 10    0.6779661 Breakfast Bacon, Egg & Cheese Bisc   5.9      470    25 
## # ... with 250 more rows, and 1 more variables: Sugars <int> 

The syntax here is that you type the name of the new column you want to create (not in quotes), an 
equals sign, and then do whatever calculations or functions you want on existing columns (also not 
in quotes). So here, we're taking the Sugars and dividing it by the Oz column. This creates a new 
column called sugar_per_oz, tagged on at the end of our dataframe. I then piped it to a select 
function, which reorders the columns so that this new one is at the front (so we can see it). 

If you wanted to do the same thing in base R, it's possible and not too much of a headache. But 
you'd need to create some intermediate dataframe for each step along the way. 

# Base R equivalent 
menu_temp <- menu 
menu_temp$sugar_per_oz <- menu_temp$Sugars / menu_temp$Oz 
menu_temp <- subset(menu_temp, select=c(sugar_per_oz, Category:Sugars)) 

When adding columns using mutate, you can add as many additional columns as you want into a 
single function as long as they're separated by commas. Here, I create the sugar_per_oz column as 
well as fat_per_oz and calories_per_oz. 

menu %>% 
    mutate(sugar_per_oz = Sugars / Oz, 
           fat_per_oz   = Fat / Oz, 
           calories_per_oz = Calories / Oz) %>% 
    select(sugar_per_oz, fat_per_oz, calories_per_oz, Item, everything()) 

## # A tibble: 260 x 9 
##    sugar_per_oz fat_per_oz calories_per_oz                     Item 
##           <dbl>      <dbl>           <dbl>                    <chr> 
##  1    0.6250000   2.708333        62.50000             Egg McMuffin 
##  2    0.6250000   1.666667        52.08333        Egg White Delight 
##  3    0.5128205   5.897436        94.87179         Sausage McMuffin 
##  4    0.3508772   4.912281        78.94737 Sausage McMuffin with Eg 
##  5    0.3508772   4.035088        70.17544 Sausage McMuffin with Eg 
##  6    0.4615385   3.538462        66.15385     Steak & Egg McMuffin 
##  7    0.5660377   4.905660        86.79245 Bacon, Egg & Cheese Bisc 
##  8    0.6896552   5.172414        89.65517 Bacon, Egg & Cheese Bisc 
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##  9    0.5555556   3.703704        75.92593 Bacon, Egg & Cheese Bisc 
## 10    0.6779661   4.237288        79.66102 Bacon, Egg & Cheese Bisc 
## # ... with 250 more rows, and 5 more variables: Category <chr>, Oz <dbl>, 
## #   Calories <int>, Fat <dbl>, Sugars <int> 

So the mutate function is really handy for adding new columns, again with easy-to-understand 
syntax that makes it easy to read and write. 

3.5  GLOBAL CHANGES TO COLUMNS 

With mutate you can actually make some substantial changes to columns. Let's say you like the Oz 
column, but you want it rounded to the nearest integer, rather than with decimals. We can do this 
with the base R round funtion, specifiying that we want it to round to zero decimal places. (I'll 
rearrange the columns so you can more easily see the changes.) 

menu %>% 
    mutate(Oz_rounded = round(Oz, 0)) %>% 
    select(Category:Oz, Oz_rounded, everything()) 

## # A tibble: 260 x 7 
##     Category                     Item    Oz Oz_rounded Calories   Fat 
##        <chr>                    <chr> <dbl>      <dbl>    <int> <dbl> 
##  1 Breakfast             Egg McMuffin   4.8          5      300    13 
##  2 Breakfast        Egg White Delight   4.8          5      250     8 
##  3 Breakfast         Sausage McMuffin   3.9          4      370    23 
##  4 Breakfast Sausage McMuffin with Eg   5.7          6      450    28 
##  5 Breakfast Sausage McMuffin with Eg   5.7          6      400    23 
##  6 Breakfast     Steak & Egg McMuffin   6.5          6      430    23 
##  7 Breakfast Bacon, Egg & Cheese Bisc   5.3          5      460    26 
##  8 Breakfast Bacon, Egg & Cheese Bisc   5.8          6      520    30 
##  9 Breakfast Bacon, Egg & Cheese Bisc   5.4          5      410    20 
## 10 Breakfast Bacon, Egg & Cheese Bisc   5.9          6      470    25 
## # ... with 250 more rows, and 1 more variables: Sugars <int> 

In fact, if we know that's what we want to do with the Oz column, we can just overwrite it by 
creating a "new column with the same name as an existing one. 

menu %>% 
    mutate(Oz = round(Oz, 0)) 

## # A tibble: 260 x 6 
##     Category                     Item    Oz Calories   Fat Sugars 
##        <chr>                    <chr> <dbl>    <int> <dbl>  <int> 
##  1 Breakfast             Egg McMuffin     5      300    13      3 
##  2 Breakfast        Egg White Delight     5      250     8      3 
##  3 Breakfast         Sausage McMuffin     4      370    23      2 
##  4 Breakfast Sausage McMuffin with Eg     6      450    28      2 
##  5 Breakfast Sausage McMuffin with Eg     6      400    23      2 
##  6 Breakfast     Steak & Egg McMuffin     6      430    23      3 
##  7 Breakfast Bacon, Egg & Cheese Bisc     5      460    26      3 
##  8 Breakfast Bacon, Egg & Cheese Bisc     6      520    30      4 
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##  9 Breakfast Bacon, Egg & Cheese Bisc     5      410    20      3 
## 10 Breakfast Bacon, Egg & Cheese Bisc     6      470    25      4 
## # ... with 250 more rows 

Normally, I wouldn't recommend doing this unless you're sure you know that you don't need the 
rounded data. You're of course only modifying the data in R only and your original dataset (the one 
that's saved as a file on your computer) is unmodifed. 

However, there is one very handy way that you can use this overwriting trick. If your data isn't 
formatted the right way (for example, R thinks a particular column is a categorical variable when in 
reality it's a number), you can modify it using this mutate function. In our McDonald's data, we 
probably want to treat Category as a factor rather than as a character vector. We can do that by 
creating a "new" column named Category that is defined as just the existing Category column 
wrapped up in the as.factor function. Because the "new" column has the same name as an 
existing one, it'll just overwrite it. 

menu <- menu %>% 
    mutate(Category = as.factor(Category)) %>% 
    print() 

## # A tibble: 260 x 6 
##     Category                     Item    Oz Calories   Fat Sugars 
##       <fctr>                    <chr> <dbl>    <int> <dbl>  <int> 
##  1 Breakfast             Egg McMuffin   4.8      300    13      3 
##  2 Breakfast        Egg White Delight   4.8      250     8      3 
##  3 Breakfast         Sausage McMuffin   3.9      370    23      2 
##  4 Breakfast Sausage McMuffin with Eg   5.7      450    28      2 
##  5 Breakfast Sausage McMuffin with Eg   5.7      400    23      2 
##  6 Breakfast     Steak & Egg McMuffin   6.5      430    23      3 
##  7 Breakfast Bacon, Egg & Cheese Bisc   5.3      460    26      3 
##  8 Breakfast Bacon, Egg & Cheese Bisc   5.8      520    30      4 
##  9 Breakfast Bacon, Egg & Cheese Bisc   5.4      410    20      3 
## 10 Breakfast Bacon, Egg & Cheese Bisc   5.9      470    25      4 
## # ... with 250 more rows 

Comparing the output to the previous one, we see that on the second line, right underneath the 
Catefory column header, it has changed from <chr> to <fctr>. Note that we'll be using this 
Category column as a factor in the next section, so I'm overwriting the menu dataframe entirely 
with this modified version. In other words, that top line is menu <- menu %>% rather than just 
menu %>%. The less than sign followed by the dash (which looks like a leftward-pointing arrow) is 
the assignment operator and is what you use to create new variable names in R. Up until now, I've 
only made temporary changes to the menu data, but because I want to keep this one for this 
workshop, I'm going to overwrite it. Because assigning data to a variable doesn't automatically print 
it out for me, I then pipe it to the print function. In fact, pretty much all of the tidyverse 
commands in my code all end in the print function so I can make sure things look good every step 
of the way. 

So with just a couple of functions, namely mutate and select, we can easily add, remove, reorder, 
and change the columns in our dataset. This modified dataset can then be piped into additional 
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functions that'll clean up your data even more. In the next section we'll see what other kinds of 
changes we can do to your data. 

4 CLEANING YOUR DATA 

In the previous section, we've seen how to make relatively large changes to your dataframe, changes 
that involve entire columns at the very least. In this section, we'll be able to zoom in a little bit and 
make small tweaks to individual columns or sometimes just a few rows within a single column. 
Specifically, we'll look at how to rename columns, rename specific factors within a column, and 
then how to filter your data based on what's in the columns. 

In base R, these are the kinds of things that are a lot harder than I feel like they should be. In fact, I 
used to do most of this stuff in Excel because it was just too annoying to do in R. With tidyverse, 
it's pretty easy to make these changes, so now I hardly work in Excel at all to be honest. Let's start 
with renaming columns. 

4.1  RENAMING COLUMNS 

If you want to rename a column in tidyverse, you can just use the rename function. Inside of it, 
you put the new name (without quotes), an equals sign, and then the old name in quotes. 

menu %>% 
    rename(name_of_food = "Item") 

## # A tibble: 260 x 6 
##     Category             name_of_food    Oz Calories   Fat Sugars 
##       <fctr>                    <chr> <dbl>    <int> <dbl>  <int> 
##  1 Breakfast             Egg McMuffin   4.8      300    13      3 
##  2 Breakfast        Egg White Delight   4.8      250     8      3 
##  3 Breakfast         Sausage McMuffin   3.9      370    23      2 
##  4 Breakfast Sausage McMuffin with Eg   5.7      450    28      2 
##  5 Breakfast Sausage McMuffin with Eg   5.7      400    23      2 
##  6 Breakfast     Steak & Egg McMuffin   6.5      430    23      3 
##  7 Breakfast Bacon, Egg & Cheese Bisc   5.3      460    26      3 
##  8 Breakfast Bacon, Egg & Cheese Bisc   5.8      520    30      4 
##  9 Breakfast Bacon, Egg & Cheese Bisc   5.4      410    20      3 
## 10 Breakfast Bacon, Egg & Cheese Bisc   5.9      470    25      4 
## # ... with 250 more rows 

If you want to rename multiple columns, just do the same thing but with commas between each 
pair: 

menu %>% 
    rename(name_of_food = "Item",  
           group = "Category", 
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           serving_size = "Oz", 
           Sugar = "Sugars") 

## # A tibble: 260 x 6 
##        group             name_of_food serving_size Calories   Fat Sugar 
##       <fctr>                    <chr>        <dbl>    <int> <dbl> <int> 
##  1 Breakfast             Egg McMuffin          4.8      300    13     3 
##  2 Breakfast        Egg White Delight          4.8      250     8     3 
##  3 Breakfast         Sausage McMuffin          3.9      370    23     2 
##  4 Breakfast Sausage McMuffin with Eg          5.7      450    28     2 
##  5 Breakfast Sausage McMuffin with Eg          5.7      400    23     2 
##  6 Breakfast     Steak & Egg McMuffin          6.5      430    23     3 
##  7 Breakfast Bacon, Egg & Cheese Bisc          5.3      460    26     3 
##  8 Breakfast Bacon, Egg & Cheese Bisc          5.8      520    30     4 
##  9 Breakfast Bacon, Egg & Cheese Bisc          5.4      410    20     3 
## 10 Breakfast Bacon, Egg & Cheese Bisc          5.9      470    25     4 
## # ... with 250 more rows 

It's really that simple. The code is clean, consise, easy to read, and easy and type. Just as pretty 
much all tidyverse functions are. 

To emphasize how handy this is, here's how I would have done the samething in base R: 

menu$name_of_food <- menu$Item 
menu$group        <- menu$Category 
menu$serving_size <- menu$Oz 
menu$Sugar        <- menu$Sugars 
menu <- menu[c(8,7,9,4,5,10)] 

First, I have to run a separate line of code for each column and it's not clear that I'm essentially 
doing the same thing each time. Then, I need to fix the order of the columns again to get it back to 
the original order, which like I mentioned before, is error-prone and hard to read. Plus I had to type 
the name of my dataframe, menu, ten times! If I had had a longer name (like 
mcdonalds_menu_items), it would have been crazy. Also, if I wanted to apply this to a different 
dataset, I'd have to copy and paste the new name ten time, where as with rename, I just need to do 
it once. It's crazy how much easier tidyverse makes things! 

4.2  RELEVEL ING FACTORS 

Renaming columns is one thing, but sometimes you'll need to change the data itself. With 
numbers, it's not too hard because calculations are relatively straightforward, but with categorical 
data (or basically anything with text), it gets tricky (See R for Data Science Chapter 15 on "Factors" 
(http://r4ds.had.co.nz/factors.html)). Let's look at the Category column in our McDonalds data. 

levels(menu$Category) 

## [1] "Beef & Pork"        "Beverages"          "Breakfast"          
## [4] "Chicken & Fish"     "Coffee & Tea"       "Desserts"           
## [7] "Salads"             "Smoothies & Shakes" "Snacks & Sides" 
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So we have nine different categories. Looking through them, perhaps you want to rename "Beef & 
Pork" to "Red Meat" and "Chicken & Fish" into "White Meat". Do to this we'll use a function in the 
forcats package, which, like readxl is part of the tidyverse but is not automatically installed 
when you load the tidyverse package. The forcats package is full of functions that work well for 
categorical data. 

library(forcats) 

After you've got it installed and loaded, use the fct_recode, which has similar syntax to rename 
to change certain values. Because we're using mutate, technically what we're doing is creating a 
"new"" column called Category (thus overwriting it). The values of this column is what was 
previously in the Category column only we're changing "Beef & Pork" to "Red Meat". 

menu_temp <- menu %>% 
    mutate(Category = fct_recode(Category, "Red Meat" = "Beef & Pork")) 
levels(menu_temp$Category) 

## [1] "Red Meat"           "Beverages"          "Breakfast"          
## [4] "Chicken & Fish"     "Coffee & Tea"       "Desserts"           
## [7] "Salads"             "Smoothies & Shakes" "Snacks & Sides" 

Just like rename, you can do multiple changes in the same function: 

menu_temp <- menu %>% 
    mutate(Category = fct_recode(Category,  
                                 "Red Meat" = "Beef & Pork", 
                                 "White Meat" = "Chicken & Fish")) 
levels(menu_temp$Category) 

## [1] "Red Meat"           "Beverages"          "Breakfast"          
## [4] "White Meat"         "Coffee & Tea"       "Desserts"           
## [7] "Salads"             "Smoothies & Shakes" "Snacks & Sides" 

With this function, it's easy to collapse factors down into fewer categories, if that's what you need 
to do. Here, we're collapsing "Beef & Pork" and "Chicken & Fish" into a "Meats" category, we'll add 
"Coffee & Tea" to a Beverages category, and we'll collapse "Desserts" and "Smoothies & Shakes" into 
"Sweets". 

menu_temp <- menu %>% 
    mutate(Category = fct_recode(Category,  
                                 "Meats" = "Beef & Pork", 
                                 "Meats" = "Chicken & Fish", 
                                 "Beverages" = "Coffee & Tea", 
                                 "Sweets" = "Desserts", 
                                 "Sweets" = "Smoothies & Shakes")) 
levels(menu_temp$Category) 

## [1] "Meats"          "Beverages"      "Breakfast"      "Sweets"         
## [5] "Salads"         "Snacks & Sides" 
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In base R, this is a lot more complicated: you have to first allow the possibility for that column to 
contain this new value (after changing it from a character vector to a factor), and then you need to 
programatically find all the matching categories and change them one at a time. Several of these 
steps are not intuitive and can cause great frustration to those who aren't super comfortable with R. 

# Turn it into a factor and allow for the new categories 
menu$Category <- factor(menu$Category,  
                             levels=c(unique(menu$Category), "Meats", "Sweets
")) 
# Change the values 
menu[menu$Category %in% c("Beef & Pork", "Chicken & Fish"),]$Category <- "Mea
ts" 
menu[menu$Category == "Coffee & Tea",]$Category <- "Beverages" 
menu[menu$Category %in% c("Desserts", "Smoothies & Shakes"),]$Category <- "Sw
eets" 
# Remove the old levels  
menu <- droplevels(menu) 

Notice how many times I had to type menu and how many times I had to type Category. I counted 
11 and 8 respectively, not to mention typing "Meats" and "Sweets" twice. So much repetition 
obfuscates what's actually going on. (You could probably cut this down using the with function, 
but it seems to me like it complicates the code more rather than simplifying it.) With the 
fct_recode function, you save a lot of typing and frustration because it takes care of all that for 
you in a way that's so much easier in every way. 

In fact, we can even make this even easier for you. If you're just collapsing a couple categories into 
one (combining the two different meat categories into one), then it's not too bad to type "Meats" 
twice in the tidyverse version. But if you have 30 different categories you want to collapse down, 
it'll get tedious to type "Meats" over and over. For this reason, there's the fct_collapse function 
(also from the forcats library), which will make it a bit easier to use. The syntax is pretty self-
explanatory in this example: 

menu_temp <- menu %>% 
    mutate(Category = fct_collapse(Category,  
                                 "Meats"     = c("Beef & Pork", "Chicken & Fi
sh"), 
                                 "Beverages" = "Coffee & Tea", 
                                 "Sweets"    = c("Desserts", "Smoothies & Sha
kes"))) 
levels(menu_temp$Category) 

## [1] "Meats"          "Beverages"      "Breakfast"      "Sweets"         
## [5] "Salads"         "Snacks & Sides" 

As you can see, with fct_collapse, you can just pass a list of all the old values instead of listing 
them one at a time. It also works just fine with only one item ("Beverages", above), so you'd 
probably be okay exclusively using fct_collapse. 
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4.3  FILTER ING 

Finally, it's important to know how to filter your data based on these columns. Admittedly, the base 
R function subset is just as succinct as the tidyverse equivalent (filter), so here they are for 
comparison. 

# Base R version 
menu_temp[menu_temp$Category == "Meats",] 
 
# Base R version using subset() 
subset(menu_temp, Category == "Meats") 
 
# Tidyverse version 
menu_temp %>% 
    filter(Category == "Meats") 

## # A tibble: 42 x 6 
##    Category                     Item    Oz Calories   Fat Sugars 
##      <fctr>                    <chr> <dbl>    <int> <dbl>  <int> 
##  1    Meats                  Big Mac   7.4      530    27      9 
##  2    Meats Quarter Pounder with Che   7.1      520    26     10 
##  3    Meats Quarter Pounder with Bac   8.0      600    29     12 
##  4    Meats Quarter Pounder with Bac   8.3      610    31     10 
##  5    Meats   Quarter Pounder Deluxe   8.6      540    27      9 
##  6    Meats Double Quarter Pounder w  10.0      750    43     10 
##  7    Meats                Hamburger   3.5      240     8      6 
##  8    Meats             Cheeseburger   4.0      290    11      7 
##  9    Meats      Double Cheeseburger   5.7      430    21      7 
## 10    Meats   Bacon Clubhouse Burger   9.5      720    40     14 
## # ... with 32 more rows 

Either way, it's pretty simple. Except for the first one, which is longer and harder to read, all you 
need to do is type the column you want to filter by, some sort of operator (==, <, >=, !=, etc.) and 
then whatever value you want to subset by, in quotes. The above code selects only the menu items 
that are in the newly created Meat category. 

You can add additional filters by just putting a comma between them. The following code filters out 
everything but the meats that are also greater than or equal to 11 ounces. 

menu_temp %>% 
    filter(Category == "Meats", 
           Oz >= 11) 

## # A tibble: 5 x 6 
##   Category                     Item    Oz Calories   Fat Sugars 
##     <fctr>                    <chr> <dbl>    <int> <dbl>  <int> 
## 1    Meats Premium McWrap Chicken &  11.1      630    32      7 
## 2    Meats Premium McWrap Southwest  11.1      670    33     12 
## 3    Meats Premium McWrap Southwest  11.2      520    20     10 



orcid.org/0000-0002-9185-0048 21 

## 4    Meats Chicken McNuggets (20 pi  11.4      940    59      0 
## 5    Meats Chicken McNuggets (40 pi  22.8     1880   118      1 

There are a couple more useful tricks when filtering data. What if you want to set a filter so that 
you can keep things if either condition matches, you can use the | operator, just like in base R. This 
code finds all Meat or Breakfast items that are greater than or equal to 11 ounces. 

menu_temp %>% 
    filter(Category == "Meats" | Category == "Breakfast", 
           Oz >= 11) 

## # A tibble: 9 x 6 
##    Category                     Item    Oz Calories   Fat Sugars 
##      <fctr>                    <chr> <dbl>    <int> <dbl>  <int> 
## 1 Breakfast Big Breakfast with Hotca  14.8     1090    56     17 
## 2 Breakfast Big Breakfast with Hotca  15.3     1150    60     17 
## 3 Breakfast Big Breakfast with Hotca  14.9      990    46     17 
## 4 Breakfast Big Breakfast with Hotca  15.4     1050    50     18 
## 5     Meats Premium McWrap Chicken &  11.1      630    32      7 
## 6     Meats Premium McWrap Southwest  11.1      670    33     12 
## 7     Meats Premium McWrap Southwest  11.2      520    20     10 
## 8     Meats Chicken McNuggets (20 pi  11.4      940    59      0 
## 9     Meats Chicken McNuggets (40 pi  22.8     1880   118      1 

Again, with just two, it's not so bad, but if you've got a different dataset with data from all 50 states 
and you want to filter out 30 of them, you'll have to type state == over and over. A more elegant 
solution that is easier to read and easer to type is to use the %in% function. This is a base function 
that essentially lets you use a list where a single string is normally used. It's a little bit unusual-
looking since it's got the percent signs, but it works just fine. I can accomplish the exact same thing 
as the above code but with less typing if I use this: 

menu_temp %>% 
    filter(Category %in% c("Meats", "Breakfast"), 
           Oz >= 11) 

Note that we don't use the == sign anymore, and the list has to be wrapped up in c() with each 
item separated by commas. 

What if you want it the opposite way? What if you want to find all food items that are over 11 
ounces that are not meat and breakfast items? 

I believe it was a page on StackOverflow where someone asked that very thing. Several of the 
responses showed that you can create a new function, let's call it "not in", which can be defined as 
follows. 

'%ni%' <- Negate('%in%') 

When you run this, you've just created a new custom function, %ni% that you can now use: 
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menu_temp %>% 
    filter(Category %ni% c("Meats", "Breakfast"), 
           Oz >= 11) 

## # A tibble: 144 x 6 
##     Category                     Item    Oz Calories   Fat Sugars 
##       <fctr>                    <chr> <dbl>    <int> <dbl>  <int> 
##  1    Salads Premium Southwest Salad   12.3      450    22     12 
##  2    Salads Premium Southwest Salad   11.8      290     8     10 
##  3 Beverages Coca-Cola Classic (Small  16.0      140     0     39 
##  4 Beverages Coca-Cola Classic (Mediu  21.0      200     0     55 
##  5 Beverages Coca-Cola Classic (Large  30.0      280     0     76 
##  6 Beverages Coca-Cola Classic (Child  12.0      100     0     28 
##  7 Beverages        Diet Coke (Small)  16.0        0     0      0 
##  8 Beverages       Diet Coke (Medium)  21.0        0     0      0 
##  9 Beverages        Diet Coke (Large)  30.0        0     0      0 
## 10 Beverages        Diet Coke (Child)  12.0        0     0      0 
## # ... with 134 more rows 

I use this %ni% function so much that I sometimes forget it's not a base function. I define it at the 
top of all my R scripts and use it all the time. It's super handy. 

There are many, many more things you can do to clean your data. In this section I've only shown 
the ones I end up using the most. But hopefully this will take care of a lot of the work that you need 
to do. 

5 RESHAPING YOUR DATA 

So far in this workshop, we've seen the basics of tidyverse functions. Some of them make for more 
elegant code than base R, but others are about teh same. In this section we'll completely reshape 
how our dataframe is organized: something that as far as I know, is definitely not easy in R. 

As I mentioned in my tweet at the beginning of this workshop, I have experienced a lot of 
frustration trying to reshape my data. By this, I mean going from "tall" to "wide". What do I mean by 
this? 

In this section we'll look at a different dataset. This one is a very small one that contains acoustic 
measurements of my own speech. Specifically, I said the words feel, fall, and fool and extracted 
acoustic measurements at 5 points along each vowel's duration. They're saved as csv files on my 
website, so you can load them directly. 

I have the data organized in two different ways. Let's look at each one and see what those 
differences are. This is what's called a "wide" format: 

vowels_wide <- read_csv("http://joeystanley.com/data/vowels_wide.csv") %>% 
    print() 
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## # A tibble: 3 x 6 
##    word  t_0.2 t_0.35  t_0.5 t_0.65  t_0.8 
##   <chr>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl> 
## 1  fall 515.54 479.96 491.71 459.01 479.61 
## 2  feel 320.29 317.59 355.08 483.47 514.34 
## 3  fool 296.76 303.73 299.21 299.48 296.11 

As you can see, we have a table that is 6 columns wide and with only 3 rows. Each row represents 
one word, with five columns representing those measurements across the five times in which those 
measurements were taken. Here's the same dataset but in a "tall" format: 

vowels_tall <- read_csv("http://joeystanley.com/data/vowels_tall.csv") %>% 
    print() 

## # A tibble: 15 x 3 
##     word  time     Hz 
##    <chr> <dbl>  <dbl> 
##  1  fall  0.20 515.54 
##  2  fall  0.35 479.96 
##  3  fall  0.50 491.71 
##  4  fall  0.65 459.01 
##  5  fall  0.80 479.61 
##  6  feel  0.20 320.29 
##  7  feel  0.35 317.59 
##  8  feel  0.50 355.08 
##  9  feel  0.65 483.47 
## 10  feel  0.80 514.34 
## 11  fool  0.20 296.76 
## 12  fool  0.35 303.73 
## 13  fool  0.50 299.21 
## 14  fool  0.65 299.48 
## 15  fool  0.80 296.11 

Here, there's one row for each acoustic measurement so that each word is spread acros five rows. 
This dataset is considered "tall" because there are many more rows than columns, giving the 
impression of a tall rectangle when you view it. (Note that depending on the size of your dataset, 
you may have many more rows than columns, regardless of how wide you spread out your data. But 
the principle applies that you can make your table relatively wider and taller when you spread out 
certain variables.) 

Why are there different ways of storing the data? It depends on the research question you're asking. 
If you're interested in each word, you might want to keep the extra-wide format so that each row 
represents a word. If you're interested in each acoustic measurement individually, you might want 
to use the tall version. 

It's good to know how to convert your data from wide to tall and vice versa. Not only because it lets 
you look at it in different ways, but because certain kinds of visualizations require one or the other. 
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5.1  GOING FROM WIDE TO TALL 

So our first step is going from the wide format to the tall format using gather. 

The way gather works is you need three arguments. First, is the key, which is some arbitrary 
name that'll be given to the new column we're going to create. Next is the value argument, which 
is the name of the column you're creating that contains the information. Finally, you just name the 
columns that you want to be combined into one. 

In this case, we'll create a column called "time" that will contain the time values (0.2, 0.35, 0.5, 
0.65, and 0.8). We'll create a new column called "Hz" since these measurements are measured as 
Hertz (a unit of frequency). And to specify the columns, we could do t_0.2, t_0.35, t_0.5, 
t_0.65, t_0.8 or better yet t_0.2:t_0.8, but since we just want everything except the word 
column, I'll just specify that I don't want the word column used. 

vowels_wide %>% 
    gather(key = "time", value = "Hz", -word) 

## # A tibble: 15 x 3 
##     word   time     Hz 
##    <chr>  <chr>  <dbl> 
##  1  fall  t_0.2 515.54 
##  2  feel  t_0.2 320.29 
##  3  fool  t_0.2 296.76 
##  4  fall t_0.35 479.96 
##  5  feel t_0.35 317.59 
##  6  fool t_0.35 303.73 
##  7  fall  t_0.5 491.71 
##  8  feel  t_0.5 355.08 
##  9  fool  t_0.5 299.21 
## 10  fall t_0.65 459.01 
## 11  feel t_0.65 483.47 
## 12  fool t_0.65 299.48 
## 13  fall  t_0.8 479.61 
## 14  feel  t_0.8 514.34 
## 15  fool  t_0.8 296.11 

The result is essentially the same as the tall format. The only difference is the order and the fact 
that the time column has that t_ before each value. Here's the code for doing that, but I'll let you 
figure out how that's done. 

vowels_wide %>% 
    gather(key = "time", value = "Hz", -word) %>% 
    separate(time, into = c("throw_away", "time"), sep="_") %>% 
    select(-throw_away) 

## # A tibble: 15 x 3 
##     word  time     Hz 
##  * <chr> <chr>  <dbl> 
##  1  fall   0.2 515.54 
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##  2  feel   0.2 320.29 
##  3  fool   0.2 296.76 
##  4  fall  0.35 479.96 
##  5  feel  0.35 317.59 
##  6  fool  0.35 303.73 
##  7  fall   0.5 491.71 
##  8  feel   0.5 355.08 
##  9  fool   0.5 299.21 
## 10  fall  0.65 459.01 
## 11  feel  0.65 483.47 
## 12  fool  0.65 299.48 
## 13  fall   0.8 479.61 
## 14  feel   0.8 514.34 
## 15  fool   0.8 296.11 

So converting something into a tall format is useful because it allows you to make line plots in 
ggplot, which are otherwise impossible. The way line plots work is that you need one column in 
your table that represents a unique value for each line you want to draw. 

vowels_tall %>% 
    ggplot(aes(x=time, y=Hz, group=word, color=word)) +  
    geom_line() +  
    theme_bw() 

 

Since we just have three words and five points we want to connect for each one, we can use the 
word column as for the group argument. If we had additional lines from any one word or if we had 
multiple observations of the same word (with 5 points each), we'd have to generate a unique ID 
column. Ask me for details if you would like do know how. 

These line plots are really useful for comparing change across some variable like time. As fantastic 
as they are, they take some work because your data has to be in a tall format. So converting from 
wide to tall is a really useful skill to have. 
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5.2  GOING FROM TALL  TO WIDE 

So what if you have some data that is already tall and you need to convert it into a wide format? 
You can use spread. 

With spread, the syntax is similar to gather. The key argument is where you specify which 
column contains the values that will become the colum names. In this case it's the time column 
since we want to spread each point in time into its own column. The value argument contains the 
column in the wide format that contains what you want to fill those cells. In this case, it's the Hz 
column. 

vowels_tall %>% 
    spread(key = time, value = Hz, sep = "_") %>% 
    print() 

## # A tibble: 3 x 6 
##    word time_0.2 time_0.35 time_0.5 time_0.65 time_0.8 
## * <chr>    <dbl>     <dbl>    <dbl>     <dbl>    <dbl> 
## 1  fall   515.54    479.96   491.71    459.01   479.61 
## 2  feel   320.29    317.59   355.08    483.47   514.34 
## 3  fool   296.76    303.73   299.21    299.48   296.11 

The result is a table strikingly similar to the wide table we saw earlier. The addition of the sep 
argument makes it so that the column name "time" is appended at the start of each column followed 
by an underscore (which I specified). This makes it so that the resulting table doesn't have column 
names that are numbers, which are tricky to work with. 

This section has been a quick run-through of how to convert things from wide to tall. In my 
experience, it has been frustrating to learn how it's done, but once you get the hang of it, it's 
incredibly useful and powerful. For more information on spreading and gathering data, see Chapter 
12 of R for Data Science (http://r4ds.had.co.nz/tidy-data.html). 

6 MERGING 

The last thing we'll cover in this workshop is merging. Sometimes you have two datasets that are 
related in some way and you want to combine them together. For this example, we'll use a simple 
dataset, the snooze one from before which should still be on your computer. As a reminder, this is 
a simulated dataset that contains information about how many minutes it took someone to get out 
of bed for an entire year. There are just two columns, the minutes and the day of the week (which is 
represented by the numbers 1–7). 

snooze <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx") %>% 
    print() 

## # A tibble: 364 x 2 
##    minutes   day 
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##      <dbl> <dbl> 
##  1       0     1 
##  2       0     3 
##  3       0     2 
##  4       0     2 
##  5       1     5 
##  6       1     3 
##  7       1     3 
##  8       1     5 
##  9       1     2 
## 10       1     4 
## # ... with 354 more rows 

We can view the general sleep patterns here by creating a simple scatterplot. I'm going to add some 
jitter to the plot which will randomly nudge the points around from left to right a little bit within 
their column. I'll also add a violin plot to see the overall shape of the distribution (which was covered 
in the previous workshop). 

ggplot(snooze, aes(x=day, y=minutes, group=day)) +  
    geom_violin() +  
    geom_jitter() +  
    theme_bw() 

 

As we can see, during most days, this person slept in maybe 4 or 5 minutes a day. But on days 6 
and 7 of each week (presumably Satuday and Sunday), they slept in a little longer, maybe around 8 
or so minutes. 

Our task is to convert the 1–7 into "Monday", "Tuesday", "Wednesday", etc. How can we do this? 
One solution is to use the fct_recode that was introduced earlier: 

snooze %>% 
    mutate(day = as.factor(day), 
        day = fct_recode(day, "Monday" = "1", "Tuesday" = "2", "Wednesday" = 
"3", 
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                         "Thursday" = "4", "Friday" = "5", "Saturday" = "6", 
"Sunday" = "7")) 

## # A tibble: 364 x 2 
##    minutes       day 
##      <dbl>    <fctr> 
##  1       0    Monday 
##  2       0 Wednesday 
##  3       0   Tuesday 
##  4       0   Tuesday 
##  5       1    Friday 
##  6       1 Wednesday 
##  7       1 Wednesday 
##  8       1    Friday 
##  9       1   Tuesday 
## 10       1  Thursday 
## # ... with 354 more rows 

With just seven possible levels, this works out fine. But imagine a scenario where we have a very 
long list of unique values, like country codes, and we're trying to convert it into the full country 
name. That would turn out to be a really big chunk of code and would be a pain to debug if there 
were typos or something. 

Instead, we can create a lookup table like we have in Excel. This table will just be 2 columns, the 
number and the day of the week, and one row for each day. 

days <- tibble( 
    id_number = 1:7, 
    spelled = c("Monday", "Tuesday", "Wednesday", "Thursday",  
                "Friday", "Saturday", "Sunday")) %>% 
    print() 

## # A tibble: 7 x 2 
##   id_number   spelled 
##       <int>     <chr> 
## 1         1    Monday 
## 2         2   Tuesday 
## 3         3 Wednesday 
## 4         4  Thursday 
## 5         5    Friday 
## 6         6  Saturday 
## 7         7    Sunday 

We can merge these two toegher using base R merge, or in tidyverse with left_join. Here, we 
supply the two tables we want to merge (the first one is usually piped in), and the crucial part is 
that we include the by argument which contains the name of the columns we want to match up, in 
quotes. If both have the exact same name, great, but in our case we have to specify both like so: 

# Base R 
merge(snooze, days, by.x="day", by.y="id_number") 
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# Tidyverse 
snooze %>% 
    left_join(days, by=c("day" = "id_number")) 

## # A tibble: 364 x 3 
##    minutes   day   spelled 
##      <dbl> <dbl>     <chr> 
##  1       0     1    Monday 
##  2       0     3 Wednesday 
##  3       0     2   Tuesday 
##  4       0     2   Tuesday 
##  5       1     5    Friday 
##  6       1     3 Wednesday 
##  7       1     3 Wednesday 
##  8       1     5    Friday 
##  9       1     2   Tuesday 
## 10       1     4  Thursday 
## # ... with 354 more rows 

Now we have a new dataset that contains the spelled out versions of the days of the week, which is 
a lot easier to read. 

I've only scratched the surface when it comes to merges and joins. I encourage you to learn more 
about them (with the help of some useful visualizations) by reading the Chapter 13 of R for Data 
Science, which is called "Relational Data" and can be found here: http://r4ds.had.co.nz/relational-
data.html#mutating-joins. 

7 WRAPPING UP 

This workshop has covered a lot of information. As a review, here're the kinds of things we've 
covered: 

1. We saw how to get your data into R using read_csv and read_excel and how these 
functions are a bit more efficient than the base R equivalents. 

2. We looked at how to tranform your data. First we started off by going over the pipe (%>%) and 
how useful it can be. We then saw how to remove and reorder columns using select and to 
add and modify columns using mutate. 

3. Next was some tricks on how to clean up your data. Using rename you can change the column 
name; using relevel you can change individual levels in your categorical data; andusing 
filter you can quickly make subsets of your data. 

4. Then we looked at how to reshape your data from wide to tall or from tall to wide formats. 
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5. We ended on how to merge two datasets together and in particular how to think of merging as 
a lookup table in Excel. 

This is a lot of information that I've thrown at you at once. But I've provided relevant reading so you 
can go in and learn more at your own pace. Hopefully this workshop has given you some new skills 
that will be useful for you and your research, but more importantly I hope it has opened your eyes a 
little bit to the kinds of ways you can transform your data, which ultimately will let you use your 
data in different ways and to lead you to new research questions. 


