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1 INTRODUCTION 

Working with data can be super frustrating. I’ve been there. In fact, this tweet from a little over 
a year ago, only hints at the frustration I was feeling at the time. 

In any given project, I think I spend more time trying to figure out how to reshape, melt, and 
cast my data than anything else. 
— Joey Stanley (@joey_stan) November 17, 2016 

Here, I make reference to specific functions (reshape, melt and cast) and I’m pretty sure I had 
spent 6–8 hours working on transforming my data to work in some visualization. I don’t even 
think I ended up getting it done in the end, and I found a really clunky, alternative solution. 

Since then, I’ve learned a lot of about a set of packages called “the tidyverse.” More importantly, 
I read the online book, R for Data Science written by Garrett Grolemund and Hadley Wickham 
(freely available at http://r4ds.had.co.nz) that explains how to use these packages and the functions 
within them. This has completely changed how I work in R and allows me to do some really 
power data transformation with ease. 

In the next section, I discuss a little bit about what the tidyverse is, but if you want to get to the 
good stuff, feel free to skip it. 

1.1  WHAT IS THE TIDYVERSE? 

According to its website (tidyverse.org), “The tidyverse is an opinionated collection of R packages 
designed for data science. All packages share an underlying philosophy and common APIs.” Let’s 
break that down. 

1. It’s a collection of R packages—When you install the tidyverse package, all you’re doing is 
installing several other packages that fall its umbrella. Some of the packages that are part 
of tidyverse include dplyr, tidyr, and ggplot2, which are among the most popular R 
packages ever. There are others that are super useful like readxl that are part of the 
tidyverse, but don’t come installed automatically with the tidyverse package, so you’ll 
have to load them explicitly. 

2. They share an underlying philosophy and common APIs—This is one of the reasons that makes the 
tidyverse so great: all the packages seamlessly integrate and work together harmoniously. 
There’s nothing worse than having to modify your dataframe in some way in order to get it 
to work for some function and then modify it again to get it work with some other function 
in another package. With the tidyverse, you can jump from one of its packages to another 
and send data around and nothing will ever get mad at you. 

3. They are designed for data science—A lot of what R can do is for statistical modeling on your 
data. Tidyverse isn’t heavy on statistics, but it can help you every step of the way otherwise. 
You can read in your data, make any modifications, and visualize it with no problem. When 
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it actually comes to fancy statistical models though, you’ll have to find more specialized 
packages. This is not to say that the tidyverse is deficient in any way: reshaping and tidying 
your data is no small feat and the tidyverse makes this a lot easier. 

4. They are opinionated—The primary author of many authors these packages, Hadley Wickham, 
is very open about how they are created, and says that this is just one way to work with data 
in R. You’re certainly welcome to work with your data another way, but using the tidyverse 
is not the only solution: it’s just one opinion of how it should be best done. 

There’s a ridiculous amount to cover with this suite. Just ggplot2 alone would take a hundred 
workshops to cover everything. The possibilities are nearly endless and I obviously can’t teach 
you everything in just a two 1-hour workshops. To give you an idea of what functions in the 
tidyverse can do, here’s a brief summary of some of its packages (all written by Hadley Wickham 
with addition authors in parentheses): 

1. ggplot2 is a very popular suite for visualizing data. Unlike other visualizations you might 
do, ggplot2 allows for pretty much infinite customization in your plots, which is really 
handy if you have nit-picky details you want to control. 

2. dplyr (Romain Francois, Lionel Henry, and Kirill Müller) lets you manipulate your data by 
doing things like adding and removing columns, filtering and subsetting your data, and 
summarizing your data (such as getting the average of some value per group within your 
data). 

3. tidyr (Lionel Henry) lets you reshape your data from “wide” to “tall” format. It’s like 
reshape and reshape2 (also written by Hadley Wickham), but in my opinion it does the 
job better with code that’s easier to interpret. 

4. readxl (Jennifer Bryan) makes allows you to read in Excel files directly into R without the 
need to convert to .csv first 

5. forcats comes with a bunch of functions for working with categorical data. 

6. stringr makes it easier to work with text in your data. 

There are many other packages that are part of the tidyverse that handle more specific tasks like 
working with particular data types. There are also ones that are more for the R programmer and 
can help you publish your R scripts into your own libraries. For now, I’ll stick with just the 
basics, but be aware that there is much, much more. 

1.2  INSTALLATION 

Just like any other R package, installing tidyverse is straightforward. 

install.packages("tidyverse") 
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You only need to run this once and then it’s on your computer. However, even if you already 
have tidyverse installed, it might be a good idea to re-install it because it has had some recent 
updates. I’ll be working with the latest version of the package, which is version 1.2.1 (November 
11, 2017). 

As always, installing it doesn’t make it automatically available to R though, so you’ll need to 
explicitly tell R you’ll be working with the package, using the library function. 

library(tidyverse) 

## ── Attaching packages ────────────────────────────────────────────────────
──────────────────────── tidyverse 1.2.1 ── 

## ✔  ggplot2 2.2.1     ✔  purrr   0.2.4 
## ✔  tibble  1.3.4     ✔  dplyr   0.7.4 
## ✔  tidyr   0.7.2     ✔  stringr 1.2.0 
## ✔  readr   1.1.1     ✔  forcats 0.2.0 

## ── Conflicts ─────────────────────────────────────────────────────────────
────────────────── tidyverse_conflicts() ── 
## ✖  dplyr::filter() masks stats::filter() 
## ✖  dplyr::lag()    masks stats::lag() 

The colorful messages just let you know what other packages are being loaded at the same time 
(there should be 8), and what versions. Alternatively, you can read in these packages individually 
and everything will be fine, but by loading tidyverse you can take care of those all in one step. 

You may also see some conflicts. What this says is that there are functions called filter and 
lag in both the dplyr and stats package (stats comes preinstalled with R and is automatically 
loaded because it contains a lot of useful functions). Normally, functions from add-on libraries 
will be “masked by” the base functions, meaning the new one won’t be used. However, here, 
tidyverse has done the opposite, and the filter() function in dplyr is overriding the one in 
stats. 

So without further ado, let’s see how we can get data in and out of R. 

2 GETTING DATA IN AND OUT OF R 

Unless you plan on generating your own data, you’ll need to get your data into R, usually as one 
of the first things you do. There are several ways we can do this, and the function you use will 
depend on what kind of file you’re reading in. Here, I’ve broken it down into .csv, .txt, and .xlsx 
files. For this section I’ll be drawing from Chapter 11 “Data Import” from R for Data Science, 
which can be read here: http://r4ds.had.co.nz/data-import.html. 
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2.1  READING IN A .CSV FILE 

If you’ve read data into R before, you’ve probably used the standard read.csv function (which 
has a period (.) in the function name). This one works just fine and you can get by perfectly well 
with it. However, tidyverse’s read_csv (with an underscore), has some additional perks that the 
standard function doesn’t come with. To show the first one, let’s go ahead and read in some 
data. If you have something on your computer, feel free to load it in like this. (Obviously, this 
code won’t work on your computer: you’ll have to change the path to some directory where you 
have data.) 

# For Macs 
my_data <- read_csv("/Users/joeystanley/Desktop/path/to/data/menu.csv") 
 
# For Windows 
my_data <- read_csv("C:\\Users\\joeystanley\\Desktop\\path\\to\\data\\menu.cs
v") 

If you don’t have anything ready, feel free to use this sample data. We’ll start with one one we 
used in the first ggplot2 workshop, the McDonald’s data. It is available for free at Kaggle.com, 
where you can get complete nutritional information. I’ve got a subset of this data on my website, 
so you can just read in this file directly from there into R by typing in the URL. 

menu <- read_csv("http://joeystanley.com/data/menu.csv") 

## Parsed with column specification: 
## cols( 
##   Category = col_character(), 
##   Item = col_character(), 
##   Oz = col_double(), 
##   Calories = col_integer(), 
##   Fat = col_double(), 
##   Sugars = col_integer() 
## ) 

The first perk of read_csv is that it gives you some output showing you how it parsed each 
column of your spreadsheet. As we learned in the first ggplot2 workshop, not all data should be 
treated the same. Numbers are very different from text, and R (as well as you) should be aware 
of what data types are contained in your file so that it (and you) can work with it the best way 
possible. There are some heuristics that determine how read_csv parses your data which we 
won’t get into here, but it’s nice to see what the final result was just to make sure that numbers 
get treated as numbers, text as text, etc. Later in this workshop we’ll see one way to change it in 
case the function got something wrong. 

The second perk of read_csv is that it turns your data into what’s called a “tibble”, which is 
tidyverse’s version of a dataframe. At its core, it is actually a dataframe, just like anything else in 
R, but it also has some additional perks. One major difference between dataframes and tibbles 
can be seen when you print them. When you print a regular dataframe, it’ll vomit out everything. 
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You get all rows (even if there are many of them) and all columns, which can be hard to read if 
your screen isn’t wide enough to display them since they’ll spill over into multiple rows. Here’s 
our menu data printed out as a dataframe. 

as.data.frame(menu) 

##     Category                                                          Item 
## 1  Breakfast                                                  Egg McMuffin 
## 2  Breakfast                                             Egg White Delight 
## 3  Breakfast                                              Sausage McMuffin 
## 4  Breakfast                                     Sausage McMuffin with Egg 
## 5  Breakfast                              Sausage McMuffin with Egg Whites 
## 6  Breakfast                                          Steak & Egg McMuffin 
## 7  Breakfast                 Bacon, Egg & Cheese Biscuit (Regular Biscuit) 
## 8  Breakfast                   Bacon, Egg & Cheese Biscuit (Large Biscuit) 
## 9  Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit) 
## 10 Breakfast   Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit) 
##     Oz Calories Fat Sugars 
## 1  4.8      300  13      3 
## 2  4.8      250   8      3 
## 3  3.9      370  23      2 
## 4  5.7      450  28      2 
## 5  5.7      400  23      2 
## 6  6.5      430  23      3 
## 7  5.3      460  26      3 
## 8  5.8      520  30      4 
## 9  5.4      410  20      3 
## 10 5.9      470  25      4 

I’ve truncated the output to save space, but on your screen you’ll see that this displays the entire 
contents of the dataframe. When we print the tibble version, it’s a lot shorter. 

menu 

## # A tibble: 260 x 6 
##     Category                                                          Item 
##        <chr>                                                         <chr> 
##  1 Breakfast                                                  Egg McMuffin 
##  2 Breakfast                                             Egg White Delight 
##  3 Breakfast                                              Sausage McMuffin 
##  4 Breakfast                                     Sausage McMuffin with Egg 
##  5 Breakfast                              Sausage McMuffin with Egg Whites 
##  6 Breakfast                                          Steak & Egg McMuffin 
##  7 Breakfast                 Bacon, Egg & Cheese Biscuit (Regular Biscuit) 
##  8 Breakfast                   Bacon, Egg & Cheese Biscuit (Large Biscuit) 
##  9 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit) 
## 10 Breakfast   Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit) 
## # ... with 250 more rows, and 4 more variables: Oz <dbl>, Calories <int>, 
## #   Fat <dbl>, Sugars <int> 
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When you look at a tibble, you only peek at the data. You get the first 10 rows and only as many 
columns as can fit on your screen without spilling over into a new column. If there are additional 
columns, they’re listed at the bottom. You also get to see what datatype each column is at the 
top of each column below the column names. This printing feature makes it easy to examine just 
a portion of your data without flooding your R Console. 

Finally, using read_csv is actually about 10 times faster than the regular read.csv function. If 
you work with very large datasets, this is a very good thing. Furthermore, if it does take more 
than about five seconds to read in your file, you’ll actually get a little progress bar down in your 
R Console saying how much it’s done and how long it has taken. This is nice to see so you know 
that R is making progress and hasn’t crashed. 

Side note, since the menu items are so long, I’m going to truncate it for display purposes only. 
You don’t have to do this. 

menu$Item <- str_sub(menu$Item, 1, 24) 
head(menu) 

## # A tibble: 6 x 6 
##    Category                     Item    Oz Calories   Fat Sugars 
##       <chr>                    <chr> <dbl>    <int> <dbl>  <int> 
## 1 Breakfast             Egg McMuffin   4.8      300    13      3 
## 2 Breakfast        Egg White Delight   4.8      250     8      3 
## 3 Breakfast         Sausage McMuffin   3.9      370    23      2 
## 4 Breakfast Sausage McMuffin with Eg   5.7      450    28      2 
## 5 Breakfast Sausage McMuffin with Eg   5.7      400    23      2 
## 6 Breakfast     Steak & Egg McMuffin   6.5      430    23      3 

2.2  READING IN AN EXCEL FILE 

In the Intro to R Workshop, I said that it’s possible to load Excel files directly into R. Before 
learning how to do this, I did a lot of work in Excel, but then I would have to save it as a .csv, 
which just involved so many steps of clicking “Save As…”, switching to .csv, and then Excel 
would give me all these warning messages saying I’ll lose formatting. Even then, I could only 
save one sheet at a time and I had two different identical datasets saved to my computer. It just 
just such a hassle. 

Reading in Excel files is possible thanks to the read_excel function which is in the readxl 
package. There are actually several packages that do the same thing, but this one is part of the 
tidyverse. However, it does not come standard in the tidyverse library, so you’ll have to load it 
explicitly. 

install.packages("readx") # If you haven't already. 
library(readxl) 

The syntax of read_excel is very similar to read_csv, which is a trend you’ll notice over and 
over in the tidyverse. All you need to do is specify the path to the file itself. Unfortunately, in 
the case of Excel files, you can’t read them directly from a website like you can with csv files, so 
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you’ll have to download the data and then load it from your computer from wherever you saved 
your file. You can just go to http://joeystanley.com/data/snoozing.xlsx and it’ll automatically 
download. 

snooze <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx") 

This file contains some fake data I created on how sleeping patterns. We’ll get to it later in the 
workshop. The crucial thing now is that it’s an Excel file and it can be read in directly into R 
which is pretty cool. By default, this reads in the first sheet of the Excel file. You can change this 
by adding the sheet argument and providing either the name of the sheet, or the sheet number. 
This particular file contains two sheets: the first has all the data and the second is nonsense. We 
can specify that we want the second sheet (called “blank”) by indicating it: 

blank <- read_excel("/Users/joeystanley/Desktop/snoozing.xlsx",  
                       sheet="blank") 

The perks of using read_excel are essentially the same as using read_csv: your data is saved 
as a tibble and it’s much faster. 

There is much more that you can do with reading data into R, not only with just those two 
functions, but with many other specialized functions in readr and readxl, including those for 
reading in specific data formats. For example, you can specify column names or column types as 
you read it in so you don’t have to change them later. I’ll let you explore those on your own. 

2.2.1  Your tu rn!  

2.2.1.1 The challenge 

Look at the help for read_excel (by running the command ?read_excel) and explore some of 
the other arguments you can add to the function. 

2.2.1.2 The solution 

Some of the arguments you can add to the function include the following. Note that many of 
these also apply to read_csv. 

1. col_names = c("example1", "example2")—This is nice if you have some spreadsheet 
that has column names you don’t like. They might be very long, or contain spaces or other 
funny characters that are hard to work with in R. I recently worked with a file that had 
many, very long, very similar column names, so I used this argument to change those 
column names right away. You just need to supply a list of names in the order they appear 
in the spreadsheet. 

2. col_types is a way to make sure R gets the data type for each column correct from the 
start. This might be good if there are lots of factors in your data, or if R consistently gets a 
column wrong, or if you’re just tired of the message when reading data in. For example, if 
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you wanted to make sure the Category column menu data was a factor and not a character, 
you could do this: 

      read_csv("http://joeystanley.com/data/menu.csv",  
             col_types = cols(Category = col_factor(levels = NULL))) 

  ## # A tibble: 260 x 6 
##     Category                                                          
Item 
##       <fctr>                                                         <
chr> 
##  1 Breakfast                                                  Egg McMu
ffin 
##  2 Breakfast                                             Egg White Del
ight 
##  3 Breakfast                                              Sausage McMu
ffin 
##  4 Breakfast                                     Sausage McMuffin with 
Egg 
##  5 Breakfast                              Sausage McMuffin with Egg Wh
ites 
##  6 Breakfast                                          Steak & Egg McMu
ffin 
##  7 Breakfast                 Bacon, Egg & Cheese Biscuit (Regular Bisc
uit) 
##  8 Breakfast                   Bacon, Egg & Cheese Biscuit (Large Bisc
uit) 
##  9 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Bisc
uit) 
## 10 Breakfast   Bacon, Egg & Cheese Biscuit with Egg Whites (Large Bisc
uit) 
## # ... with 250 more rows, and 4 more variables: Oz <dbl>, Calories <in
t>, 
## #   Fat <dbl>, Sugars <int> 

  This is handy, but it takes some getting used to. For more help, look at section 11.4.2 of R 
for Data Science. 

3. I’ve had to use skip = 3 when I read in some census data. The file I downloaded had three 
lines of citation information that weren’t actually part of the data. The real table started at 
line 4, so I was just able to skipped them without modifying the original Excel file. 

There are others, but these are the ones I’ve used recently. 

2.3  READING IN A .TXT FILE 

Even though they’re probably the simplest type, .txt files are a little bit trickier to work with. All 
the .txt files have been “tab-delimited”, meaning that it was essentially a spreadsheet but instead 
of commas separating each cell, there were tabs. This filetype is actually useful because if some 
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of your columns contain commas (city + state, sentences, etc.), using a tab makes sure those 
commas don’t separate columns unexpectedly. 

The function for this is read_delim. It looks very similar to read_csv and read_excel, except 
you need to specify the delim argument. If the file is separated by tabs, you can use "\t" for 
that, which is “computer talk” for a tab character. The cereal data, which we used in the second 
ggplot2 data, is also stored on my website as a tab-delimited file. This is another dataset made 
available through Kaggle.com that contain nutritional information of 80 different kinds of cereal. 

cereal <- read_delim("http://joeystanley.com/data/cereal.txt", delim = "\t") 

## Parsed with column specification: 
## cols( 
##   name = col_character(), 
##   mfr = col_character(), 
##   type = col_character(), 
##   shelf = col_integer(), 
##   weight = col_double(), 
##   cups = col_double(), 
##   rating = col_double(), 
##   calories = col_integer(), 
##   sugars = col_integer(), 
##   protein = col_integer(), 
##   fat = col_integer(), 
##   sodium = col_integer(), 
##   fiber = col_double() 
## ) 

Note that you may have gotten that long message about what kinds of columns were read in. 
This is a nice case where using the col_types argument would be good because we actually have 
two changes to make. And if you specify just one column, the message goes away for the rest of 
them. 

cereal <- read_delim("/Users/joeystanley/Desktop/github/joeystanley/data/cere
al.txt",  
           delim = "\t", 
           col_types = cols( 
               type = col_factor(levels = NULL), 
               mfr  = col_factor(levels = NULL) 
           )) 

2.4  SAVING R DATA TO YOUR COMPUTER 

So we’ve covered how to get data into R, it might be useful to look at how to get data out of R. 
Often you’ll make all sorts of changes to your data and it would be nice to save that so you don’t 
have to do that all over again. Or sometimes there will be useful output or transformations of 
your data that are super useful to hold on to for later. 
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The main function I use is write_csv, which is straightforward. First, provide the dataset you 
want to save, and then specify where you want it to be saved. 

write_csv(snooze, "/Users/joeystanley/Desktop/snooze.csv") 

The comma-separated value is recommended because it’s easiest to use later by R or other 
programs. But if you want to save it as a .txt file, just use write_delim, with the extra argument 
of specifying what should separate the columns. 

write_delim(snooze, "/Users/joeystanley/Desktop/snooze.txt", delim = "\t") 

I don’t know of a way to create Excel files in R. They are actually quite a bit more complicated 
because they have to store information about all sorts of stuff like potential colors, borders, fonts, 
etc. I’m sure someone has created a package to do that, but you’re on your own for figuring out 
how. 

2.4.1  Your tu rn!  

Try reading in a dataset of your own into R. Check the file time and use the appropriate 
command. You may use any additional arguments as you see fit. Make sure that everything looks 
good when you View your data. 

3 THE SELECT FUNCTION 

Whenever I read data into R, the very next step is always to process the data a little further. Out-
of-the-box, it’s never exactly how I want it. We saw some of this processing with the col_types 
argument in the read_* family of functions. In this section, we’ll look at how to reorder or 
remove columns using the select function. 

3.1  REORDER COLUMNS 

You would think that reorder columns in R would be straightforward. But, as far as I’m aware, 
it’s not easy using regular R functions. Let’s take our McDonald’s data. 

head(menu) 

## # A tibble: 6 x 6 
##    Category                     Item    Oz Calories   Fat Sugars 
##       <chr>                    <chr> <dbl>    <int> <dbl>  <int> 
## 1 Breakfast             Egg McMuffin   4.8      300    13      3 
## 2 Breakfast        Egg White Delight   4.8      250     8      3 
## 3 Breakfast         Sausage McMuffin   3.9      370    23      2 
## 4 Breakfast Sausage McMuffin with Eg   5.7      450    28      2 
## 5 Breakfast Sausage McMuffin with Eg   5.7      400    23      2 
## 6 Breakfast     Steak & Egg McMuffin   6.5      430    23      3 
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Let’s say we wanted to just move things around a little bit so that the Item column is first instead 
of Category, and then you want Sugars to go before Calories. In base R, you accomplish this 
by referring the the column order: 

menu[, c(2,1,3,6,4,5)] 

## # A tibble: 6 x 6 
##                       Item  Category    Oz Sugars Calories   Fat 
##                      <chr>     <chr> <dbl>  <int>    <int> <dbl> 
## 1             Egg McMuffin Breakfast   4.8      3      300    13 
## 2        Egg White Delight Breakfast   4.8      3      250     8 
## 3         Sausage McMuffin Breakfast   3.9      2      370    23 
## 4 Sausage McMuffin with Eg Breakfast   5.7      2      450    28 
## 5 Sausage McMuffin with Eg Breakfast   5.7      2      400    23 
## 6     Steak & Egg McMuffin Breakfast   6.5      3      430    23 

This is fine, and actually quite succinct, but it has some problems. First, if there’re only six 
columns this isn’t a big deal to count all of them. But if you have dozens of columns, it can get 
tedious to sit there and count them, and then you’re bound to get something wrong anyway. 
Also, it’s not clear what the numbers refer to. Furthermore, if your original dataset changes and 
now you have a new column somewhere in the middle, everything will get completely messed 
up. With the select function (which is in the dplyr package), you can refer to the columns by 
name—and you don’t even need to put quotes around them: 

select(menu, Item, Category, Oz, Sugars, Calories, Fat) 

## # A tibble: 6 x 6 
##                       Item  Category    Oz Sugars Calories   Fat 
##                      <chr>     <chr> <dbl>  <int>    <int> <dbl> 
## 1             Egg McMuffin Breakfast   4.8      3      300    13 
## 2        Egg White Delight Breakfast   4.8      3      250     8 
## 3         Sausage McMuffin Breakfast   3.9      2      370    23 
## 4 Sausage McMuffin with Eg Breakfast   5.7      2      450    28 
## 5 Sausage McMuffin with Eg Breakfast   5.7      2      400    23 
## 6     Steak & Egg McMuffin Breakfast   6.5      3      430    23 

This is admittedly a bit more typing, but I think the clarity is worth it. With select, all you do 
is first type the name of the dataset you want to work with, and then just start listing columns, 
separated by commas. This overcomes all the problems with the base R way: you don’t have to 
sit and count a bunch of columns anymore (referring to names is easier than numbers), it’s clear 
what this does, and if you get a random new column in the middle, you still end up with the 
colum order you want. 

3.2  TANGENT: %>%  (“THE PIPE”) 

One of the handier things about the tidyverse is this cool function called “the pipe” (%>%). This 
is a way to rewrite your functions so that they’re a little bit easier and they focus more on what 
the functions are doing. 
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To give an example of what the pipe does, consider the following snippets of code that each 
produce identical outputs. 

print("Hi, Mom!") 
"Hi, Mom!" %>%  
    print() 

## [1] "Hi, Mom!" 

round(mean(c(1, 2, 3, pi, 4))) 
c(1, 2, 3, pi, 4) %>%  
    mean() %>%  
    round() 

## [1] 3 

round(mean(c(1, 2, 3, pi, 4, NA), na.rm = TRUE), 1) 
c(1, 2, 3, pi, 4, NA) %>%  
    mean(na.rm = TRUE) %>%  
    round(1) 

## [1] 2.628 

What the pipe does is it takes whatever is on the left and makes it the first argument to whatever 
is on the right. For many functions, that first argument is the data that the functions works with. 
This is handy because it makes the dataset standout visually in the code, rather than it being 
buried deep within somewhere. This is especially evident when we have to nest multiple 
functions together or when there are arguments to the functions. The pipe separates all these 
out in a way that makes it clear what everything is doing and which arguments go with which 
function. 

When you read the code, you can think of the pipe as “and then…”. So in the last example, you 
might read it as “take this list of values, and then find it’s mean (after removing NAs), and then 
round it (to three decimal places).” 

The pipe is super handy for pretty much all tidyverse stuff. So for example, you could rewrite 
chunk of code above that used the select function as this: 

menu %>% 
    select(Item, Category, Oz, Sugars, Calories, Fat) 

## # A tibble: 260 x 6 
##                        Item  Category    Oz Sugars Calories   Fat 
##                       <chr>     <chr> <dbl>  <int>    <int> <dbl> 
##  1             Egg McMuffin Breakfast   4.8      3      300    13 
##  2        Egg White Delight Breakfast   4.8      3      250     8 
##  3         Sausage McMuffin Breakfast   3.9      2      370    23 
##  4 Sausage McMuffin with Eg Breakfast   5.7      2      450    28 
##  5 Sausage McMuffin with Eg Breakfast   5.7      2      400    23 
##  6     Steak & Egg McMuffin Breakfast   6.5      3      430    23 
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##  7 Bacon, Egg & Cheese Bisc Breakfast   5.3      3      460    26 
##  8 Bacon, Egg & Cheese Bisc Breakfast   5.8      4      520    30 
##  9 Bacon, Egg & Cheese Bisc Breakfast   5.4      3      410    20 
## 10 Bacon, Egg & Cheese Bisc Breakfast   5.9      4      470    25 
## # ... with 250 more rows 

This makes it even clearer because the only thing within the select parentheses are the column 
names themselves. In fact, because the pipe allows you to stack functions, you could even read 
in the data and then reorder it all in one block. The following snippet reads in data, reorders it, 
prints it out, and saves the result into the menu object. 

menu <- read_csv("http://joeystanley.com/data/menu.csv") %>% 
    select(Item, Category, Oz, Sugars, Calories, Fat) %>% 
    print() 

## # A tibble: 260 x 6 
##                        Item  Category    Oz Sugars Calories   Fat 
##                       <chr>     <chr> <dbl>  <int>    <int> <dbl> 
##  1             Egg McMuffin Breakfast   4.8      3      300    13 
##  2        Egg White Delight Breakfast   4.8      3      250     8 
##  3         Sausage McMuffin Breakfast   3.9      2      370    23 
##  4 Sausage McMuffin with Eg Breakfast   5.7      2      450    28 
##  5 Sausage McMuffin with Eg Breakfast   5.7      2      400    23 
##  6     Steak & Egg McMuffin Breakfast   6.5      3      430    23 
##  7 Bacon, Egg & Cheese Bisc Breakfast   5.3      3      460    26 
##  8 Bacon, Egg & Cheese Bisc Breakfast   5.8      4      520    30 
##  9 Bacon, Egg & Cheese Bisc Breakfast   5.4      3      410    20 
## 10 Bacon, Egg & Cheese Bisc Breakfast   5.9      4      470    25 
## # ... with 250 more rows 

Another handy thing is that since it’s all being treated as one giant line of code, you can put your 
cursor anywhere in the entire block and run it, and it’ll do the whole thing for you. So you don’t 
need to highlight the whole block in order to run it. 

Being able to do a whole bunch of stuff at once like this is really nice also because then you don’t 
have to keep track of multiple versions of the same data. You don’t need a menu and a 
menu_reordered or a menu_clean object: you can just do it all at once and skip the intermediate 
steps. Pretty handy. I would highly recommend getting used to the pipe because it will save you 
a lot of hassle. 

3.3  REMOVING COLUMNS 

Sometimes the data you read in has too many columns and you just want to get rid of them to 
make things easier. In base R, the way I learned how to remove a column was to set it equal to 
null: 

data$bad_column <- NULL 
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That was fine if it was a one-off thing, but if there were many of them, it was kind of annoying 
to do. In tidyverse, you can actually also use the select function to do this. Let’s say we read in 
the menu data, but we don’t need to worry about the Oz column. We can easy remove it by 
putting a minus sign before it in select: 

menu %>% 
    select(-Oz) %>% 
    print(n = 5) 

## # A tibble: 260 x 5 
##                       Item  Category Sugars Calories   Fat 
##                      <chr>     <chr>  <int>    <int> <dbl> 
## 1             Egg McMuffin Breakfast      3      300    13 
## 2        Egg White Delight Breakfast      3      250     8 
## 3         Sausage McMuffin Breakfast      2      370    23 
## 4 Sausage McMuffin with Eg Breakfast      2      450    28 
## 5 Sausage McMuffin with Eg Breakfast      2      400    23 
## # ... with 255 more rows 

Alternatively, we can just list the columns we want to keep, and select will drop the rest: 

menu %>% 
    select(Item, Category, Sugars, Calories, Fat) %>% 
    print(n = 5) 

## # A tibble: 260 x 5 
##                       Item  Category Sugars Calories   Fat 
##                      <chr>     <chr>  <int>    <int> <dbl> 
## 1             Egg McMuffin Breakfast      3      300    13 
## 2        Egg White Delight Breakfast      3      250     8 
## 3         Sausage McMuffin Breakfast      2      370    23 
## 4 Sausage McMuffin with Eg Breakfast      2      450    28 
## 5 Sausage McMuffin with Eg Breakfast      2      400    23 
## # ... with 255 more rows 

In fact, you can even just reorder things if you need, and the ones you don’t include will be 
silently dropped. 

menu %>% 
    select(Fat, Calories, Item) %>% 
    print(n = 5) 

## # A tibble: 260 x 3 
##     Fat Calories                     Item 
##   <dbl>    <int>                    <chr> 
## 1    13      300             Egg McMuffin 
## 2     8      250        Egg White Delight 
## 3    23      370         Sausage McMuffin 
## 4    28      450 Sausage McMuffin with Eg 
## 5    23      400 Sausage McMuffin with Eg 
## # ... with 255 more rows 
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However, doing this is potentially troublesome for you down the road. If you decide you need 
that column you want at a later date, it’s not immediately obvious where it went. This is why 
you should comment your code to explain why things are written the way they are. 

3.4  ADDITIONAL SELECT TR ICKS 

If you have only a few columns, it’s not too big of a deal to type them all out. But if you have 
many, it can get tedious, especially if you only need to make a couple changes. Fortunately, 
select has a way to specify multiple columns at once, analgous with how some R syntax works. 
In R, you can use a colon : to specify a range of things. 

c(1, 2, 3, 10:20) 

##  [1]  1  2  3 10 11 12 13 14 15 16 17 18 19 20 

You can do a similar thing in select. If you want to include many adjacent columns, just use a 
colon between them: 

menu %>% 
    select(Item, Oz:Fat) 

## # A tibble: 260 x 5 
##                        Item    Oz Sugars Calories   Fat 
##                       <chr> <dbl>  <int>    <int> <dbl> 
##  1             Egg McMuffin   4.8      3      300    13 
##  2        Egg White Delight   4.8      3      250     8 
##  3         Sausage McMuffin   3.9      2      370    23 
##  4 Sausage McMuffin with Eg   5.7      2      450    28 
##  5 Sausage McMuffin with Eg   5.7      2      400    23 
##  6     Steak & Egg McMuffin   6.5      3      430    23 
##  7 Bacon, Egg & Cheese Bisc   5.3      3      460    26 
##  8 Bacon, Egg & Cheese Bisc   5.8      4      520    30 
##  9 Bacon, Egg & Cheese Bisc   5.4      3      410    20 
## 10 Bacon, Egg & Cheese Bisc   5.9      4      470    25 
## # ... with 250 more rows 

As mentioned above, one downside of select is that if you forget to specify a column in select, 
it’ll silently disappear and you won’t know where it went until you do some further digging. 
Using the colon solves this problem to some extent because it’ll capture everything between 
those two columns, whether you meant to or not. You can also use the everything() function 
to select everything that you haven’t already done yet. This makes sure you don’t miss any: 

menu %>% 
    select(Item, everything()) 

## # A tibble: 260 x 6 
##                        Item  Category    Oz Sugars Calories   Fat 
##                       <chr>     <chr> <dbl>  <int>    <int> <dbl> 
##  1             Egg McMuffin Breakfast   4.8      3      300    13 
##  2        Egg White Delight Breakfast   4.8      3      250     8 
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##  3         Sausage McMuffin Breakfast   3.9      2      370    23 
##  4 Sausage McMuffin with Eg Breakfast   5.7      2      450    28 
##  5 Sausage McMuffin with Eg Breakfast   5.7      2      400    23 
##  6     Steak & Egg McMuffin Breakfast   6.5      3      430    23 
##  7 Bacon, Egg & Cheese Bisc Breakfast   5.3      3      460    26 
##  8 Bacon, Egg & Cheese Bisc Breakfast   5.8      4      520    30 
##  9 Bacon, Egg & Cheese Bisc Breakfast   5.4      3      410    20 
## 10 Bacon, Egg & Cheese Bisc Breakfast   5.9      4      470    25 
## # ... with 250 more rows 

So the select function can do a lot. It’s probably just as easy as base R, but it might be a little 
bit clearer for you or another person to understand the code being used. 

3.4.1  You turn!  

3.4.1.1 The challenge 

Read in one of your own datasets and play around with the select function. If you don’t have 
one ready, try working with the cereal dataset. Try putting the columns in a more logical order 
or removing ones you don’t need. 

3.4.1.2 The solution 

With the cereal data, there are some columns I don’t need all the time or that I don’t understand 
what they’re for. I can use select to remove them and then reorder things. 

cereal %>%  
    select(name, rating, cups, calories:fiber) %>% 
    head() 

## # A tibble: 6 x 9 
##                        name   rating  cups calories sugars protein   fat 
##                       <chr>    <dbl> <dbl>    <int>  <int>   <int> <int> 
## 1                 100% Bran 68.40297  0.33       70      6       4     1 
## 2         100% Natural Bran 33.98368  1.00      120      8       3     5 
## 3                  All-Bran 59.42551  0.33       70      5       4     1 
## 4 All-Bran with Extra Fiber 93.70491  0.50       50      0       4     0 
## 5            Almond Delight 34.38484  0.75      110      8       2     2 
## 6   Apple Cinnamon Cheerios 29.50954  0.75      110     10       2     2 
## # ... with 2 more variables: sodium <int>, fiber <dbl> 

4 THE MUTATE FUNCTION 

Another super common function that I use is mutate, which is in the dplyr package. This 
function can both create new columns and modify existing ones. Let’s see how it’s done. 
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4.1  CREATING NEW COLUMNS 

The cereal data we have is good because it lists a lot of nutritional information that you might 
find on the box. However, it doesn’t show any calculations of this data. Let’s say we want to see 
what the sugariest cereal is. Let’s make a quick tangent and look at the arrange function. Using 
arrange, we can sort our data (alphabetically or numerically) based on the values in some 
column. By default, it’ll put them from lowest to highest, but if we put a minus sign before the 
column name, it’ll sort it from highest to lowest. 

cereal %>%  
    select(-mfr, -type, -shelf, -weight) %>% 
    arrange(-sugars) %>% 
    head() 

## # A tibble: 6 x 9 
##                    name  cups   rating calories sugars protein   fat 
##                   <chr> <dbl>    <dbl>    <int>  <int>   <int> <int> 
## 1          Golden Crisp  0.88 35.25244      100     15       2     0 
## 2                Smacks  0.75 31.23005      110     15       2     1 
## 3           Apple Jacks  1.00 33.17409      110     14       2     0 
## 4 Post Nat. Raisin Bran  0.67 37.84059      120     14       3     1 
## 5     Total Raisin Bran  1.00 28.59278      140     14       3     1 
## 6           Cocoa Puffs  1.00 22.73645      110     13       1     1 
## # ... with 2 more variables: sodium <int>, fiber <dbl> 

So according to this, the top five sugariest cereals per serving are Golden Crisp, Smacks, Apple 
Jacks, and two kinds of Raisin Bran. (Personally, it’s satisfying to see Smacks up there: even as a 
kid I thought that cereal was way too sugary!) But this is a little deceivin, because the serving 
size is a little bit different for each one. What if we want to see the amount of sugar per cup? I 
personally never eat what the recommended serving size is for cereal because I just fill my bowl 
up the same regardless of what kind of cereal I have. So a better idea of how much sugar has is 
to look at the cereal per cup rather than per serving. 

We can add columns with the mutate function. First, type whatever you want to name the new 
column, an equals sign, and then whatever calculations you want. If you want to refer to other 
columns, just type them (without quotes) and it’ll take care of it for you. So here, I’m creating a 
new column called sugar_per_cup, which is a calculation of the values in the sugars column 
divided by the values in the cups column. I’ll then sort the data by the amount of sugar per cup 
rather than per serving. 

cereal %>% 
    select(-mfr, -type, -shelf, -weight) %>% 
    mutate(sugar_per_cup = sugars / cups) %>% 
    arrange(-sugar_per_cup) %>% 
    head() 

## # A tibble: 6 x 10 
##                    name  cups   rating calories sugars protein   fat 
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##                   <chr> <dbl>    <dbl>    <int>  <int>   <int> <int> 
## 1 Post Nat. Raisin Bran  0.67 37.84059      120     14       3     1 
## 2  Oatmeal Raisin Crisp  0.50 30.45084      130     10       3     2 
## 3                Smacks  0.75 31.23005      110     15       2     1 
## 4  Mueslix Crispy Blend  0.67 30.31335      160     13       3     2 
## 5             100% Bran  0.33 68.40297       70      6       4     1 
## 6         Fruitful Bran  0.67 41.01549      120     12       3     0 
## # ... with 3 more variables: sodium <int>, fiber <dbl>, 
## #   sugar_per_cup <dbl> 

Now this paints a different picture. Now the top five sugariest cereals per cup are all different 
(except for Smacks!). So now, next time you pour yourself some Raisin Bran—a supposedly 
healthy cereal—keep in mind that you’re eating a whopping 20 grams of sugar per cup. 

4.1.1  Your tu rn!  

4.1.1.1 The challenge 
1. Before moving on, just make sure that you fully understand all five lines in the code block 

above. We’re starting to get to the point where our blocks of code are getting long, and if 
you just gloss over them, it won’t be clear what each function doing every step of the way. 

2. Pick a different nutritional fact about the cereal and see if you can find any differences when 
you sort the table by that fact by serving as opposed to by cup. 

4.1.1.2 The solution 

I decided to go with sodium. Maybe you’re on a low-sodium diet and want to know which cereals 
to avoid. Here are the cereals with the most sodium per serving. 

# Sort by amount of sodium per serving. 
cereal %>% 
    select(name, cups, sodium) %>% 
    arrange(-sodium) %>% 
    head() 

## # A tibble: 6 x 3 
##             name  cups sodium 
##            <chr> <dbl>  <int> 
## 1     Product 19  1.00    320 
## 2       Cheerios  1.25    290 
## 3    Corn Flakes  1.00    290 
## 4  Rice Krispies  1.00    290 
## 5      Corn Chex  1.00    280 
## 6 Golden Grahams  0.75    280 

But, if we create a new column with sodium per cup, it shows a different list. 

# Sort by amount of sodium per cup 
cereal %>% 
    select(name, cups, sodium) %>% 
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    mutate(sodium_per_cup = sodium / cups) %>% 
    arrange(-sodium_per_cup) %>% 
    head() 

## # A tibble: 6 x 4 
##             name  cups sodium sodium_per_cup 
##            <chr> <dbl>  <int>          <dbl> 
## 1       All-Bran  0.33    260       787.8788 
## 2     Grape-Nuts  0.25    170       680.0000 
## 3      100% Bran  0.33    130       393.9394 
## 4 Golden Grahams  0.75    280       373.3333 
## 5  Fruitful Bran  0.67    240       358.2090 
## 6     Wheat Chex  0.67    230       343.2836 

So unless you’re careful about serving size, you should definitely avoid All-Bran and Grape-Nuts 
if you’re watching your sodium. 

4.2  MODIFYING COLUMNS 

We can also use mutate to modify existing columns. A big reason to modify something is if it’s 
in the wrong data type. For example, if you are reading data about a sports team and you have a 
column with the jersey number, R will read that in as a numeric value when it really should be 
treated as a categorical variable. (Player 20 is not inherently twice as big or twice as good as 
player 10!) In R there are actually several more data types than just “categorical” or “numeric.” 
Unfortunately, we don’t have time in this workshops to cover the details of all of them. 

One thing you may want to do is rename and change the order of factors in a categorical variable. 
We saw this in the second ggplot2 workshop when making a barplot to control the labels at the 
bottom and the order the bars appear. The following is the code we used to rename the factors 
using base R. 

# First make a copy 
cereal_renamed <- cereal 
 
# Copy and paste this complicated code one-by-one 
levels(cereal_renamed$mfr)[levels(cereal_renamed$mfr)=="K"] <- "Kellogg's" 
levels(cereal_renamed$mfr)[levels(cereal_renamed$mfr)=="G"] <- "General Mills
" 
levels(cereal_renamed$mfr)[levels(cereal_renamed$mfr)=="P"] <- "Post" 
levels(cereal_renamed$mfr)[levels(cereal_renamed$mfr)=="Q"] <- "Quaker Oats" 
levels(cereal_renamed$mfr)[levels(cereal_renamed$mfr)=="R"] <- "Ralston Purin
a" 
levels(cereal_renamed$mfr)[levels(cereal_renamed$mfr)=="N"] <- "Nabisco" 
 
# Plot it 
ggplot(cereal_renamed, aes(mfr)) +  
    geom_bar()  
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The problem with this is that it takes quite a bit of complicated code to do that, and the code 
itself is quite repetitive. We then saw that with the package forcats, which is part of the 
tidyverse, you can do that a lot simpler: 

cereal_renamed <- cereal 
cereal_renamed$mfr <- fct_recode(cereal_renamed$mfr, 
                         "Kellogg's" = "K", 
                         "General Mills" = "G", 
                         "Post" = "P", 
                         "Quaker Oats" = "Q", 
                         "Ralston Purina" = "R", 
                         "Nabisco" = "N") 

In fact, we can make this even more succinct using the mutate function. Similar to creating new 
columns, you first type the name of the “new” column, but if that name matches an existing 
column name, it’ll overwrite it. 

cereal_renamed <- cereal %>% 
    mutate(mfr = fct_recode(mfr, 
                         "Kellogg's" = "K", 
                         "General Mills" = "G", 
                         "Post" = "P", 
                         "Quaker Oats" = "Q", 
                         "Ralston Purina" = "R", 
                         "Nabisco" = "N")) 

This saves even more typing because you don’t have to keep typing cereal or cereal_renamed 
over and over. In fact, we can even pipe this straight into ggplot since cereal is the first 
argument of that function: 
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cereal %>% 
    mutate(mfr = fct_recode(mfr, 
                         "Kellogg's" = "K", 
                         "General Mills" = "G", 
                         "Post" = "P", 
                         "Quaker Oats" = "Q", 
                         "Ralston Purina" = "R", 
                         "Nabisco" = "N")) %>% 
    ggplot(aes(mfr)) +  
        geom_bar() 

 

So in one chunk of code, we can take the cereal data frame, modify it, and plot it. That’s pretty 
cool. 

The next step in the ggplot2 workshop was to then reorder the columns, and we used the 
following code to do that: 

cereal_ordered <- cereal_renamed 
cereal_ordered$mfr <- factor(cereal_ordered$mfr,  
                             levels = c("Kellogg's", "General Mills", "Post",  
                                        "Ralston Purina", "Quaker Oats", "Nab
isco")) 
ggplot(cereal_ordered, aes(mfr)) +  
    geom_bar()  
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We can consolidate this into one chunk of code using mutate. We first take the cereal_renamed 
data, and add “new” column called mfr that takes the old column mfr and turns it into a factor 
with the levels being those cereals in that order. 

cereal_renamed %>% 
    mutate(mfr = factor(mfr,  
                        levels = c("Kellogg's", "General Mills", "Post",  
                                        "Ralston Purina", "Quaker Oats", "Nab
isco"))) 

The purpose of reordering the columns like this was to put them in order of frequency. With six 
columns, it’s not a big deal, but if you have many more, it can get tedious. In the ggplot2 
workshop, I said we can use tidyverse functions to do this automatically, and so here we are! The 
function you want is also in the forcats package and is called fct_infreq. To use it, just put 
the name of the column you want to sort. 

cereal_renamed %>%  
    mutate(mfr = fct_infreq(mfr)) %>% 
    ggplot(aes(mfr)) + 
        geom_bar() 
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The function does exactly what we expect. It creates a “new” column called mfr that takes the 
old mfr column and sorts the factors in order of frequency. Pretty slick. 

4.2.1  Your tu rn!  

4.2.1.1 The challenge 

Part of the reason for why the pipe is so useful is that we don’t have to make all these 
intermediate dataframes that are all similar to each other and only differ slightly. In the ggplot2 
workshops, we had cereal, cereal_renamed, and cereal_ordered. With the pipe and mutate, 
we can do all the cleaning in one step, straight from reading the data in. So, your challenge is to 
do the following in one block of piped functions: 

1. Read the cereal data in, making sure that the type and mfr columns are read in as factors. 

2. Change the mfr column so that the full, unabbreviated forms are used. 

3. Put the mfr column in order of frequency. 

4. Print it out. 

Then take that data and create a bar plot. It should look identical to the above plot. 

4.2.1.2 The solution 

Below you’ll find the entire block that accomplishes this task. Note that you’re perfectly welcome 
to have two separate mutate functions in the same piped block. However, you can also put 
multiple changes within the same mutate function—you just need to put a comma between 
them. 
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# Example code: do not run! 
sample_data %>%  
    mutate(x = 1:10, 
           y = 10:20, 
           z = x + y) 

Note that doing it this way, you can refer to columns you’ve just created/modified and it’ll work 
the way you want them to. So, in the block below, I only have one mutate function that takes 
care of the recoding and the releveling. 

# Read it in as a tab-delineated file 
cereal <- read_delim("/Users/joeystanley/Desktop/github/joeystanley/data/cere
al.txt",  
           delim = "\t", 
           # Make sure the column types are correct. 
           col_types = cols( 
               type = col_factor(levels = NULL), 
               mfr  = col_factor(levels = NULL) 
           )) %>% 
    # Spell the manufacturers out instead of the abbreviations. 
    mutate(mfr = fct_recode(mfr, 
                         "Kellogg's" = "K", 
                         "General Mills" = "G", 
                         "Post" = "P", 
                         "Quaker Oats" = "Q", 
                         "Ralston Purina" = "R", 
                         "Nabisco" = "N"), 
            
           # ...and put them in order of frequency. 
           mfr = fct_infreq(mfr)) %>% 
     
    # Print it out. 
    print() 

## # A tibble: 75 x 13 
##                         name            mfr   type shelf weight  cups 
##                        <chr>         <fctr> <fctr> <int>  <dbl> <dbl> 
##  1                 100% Bran        Nabisco      C     3   1.00  0.33 
##  2         100% Natural Bran    Quaker Oats      C     3   1.00  1.00 
##  3                  All-Bran      Kellogg's      C     3   1.00  0.33 
##  4 All-Bran with Extra Fiber      Kellogg's      C     3   1.00  0.50 
##  5            Almond Delight Ralston Purina      C     3   1.00  0.75 
##  6   Apple Cinnamon Cheerios  General Mills      C     1   1.00  0.75 
##  7               Apple Jacks      Kellogg's      C     2   1.00  1.00 
##  8                   Basic 4  General Mills      C     3   1.33  0.75 
##  9                 Bran Chex Ralston Purina      C     1   1.00  0.67 
## 10               Bran Flakes           Post      C     3   1.00  0.67 
## # ... with 65 more rows, and 7 more variables: rating <dbl>, 
## #   calories <int>, sugars <int>, protein <int>, fat <int>, sodium <int>, 
## #   fiber <dbl> 



 orcid.org/0000-0002-9185-0048 26 

# Plot it 
ggplot(cereal, aes(mfr)) + 
        geom_bar() 

 

5 MISCELLANEOUS FUNCTIONS 

In this last section, we’ll take a look at a couple other functions that you might find to be useful: 
filter and rename. 

5.1  THE FILTER FUNCTION 

Sometimes you don’t want to work with your entire data frame and you just want to see a subset. 
Base R has a function called subset that actually works quite well. The dplyr package also has 
one, filter, that accomplishes the same thing. For consistency’s sake, we’ll continue with the 
tidyverse version. 
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In our cereal data, we have one column, type, that specifies whether it’s a hot (=H) or cold (=C) 
cereal. But, if you look at the data, you’ll see that there’s just one hot cereal in the whole list, 
“Cream of Wheat (Quick).” 

summary(cereal) 

##      name                       mfr     type       shelf       
##  Length:75          Kellogg's     :23   C:74   Min.   :1.000   
##  Class :character   General Mills :22   H: 1   1st Qu.:1.500   
##  Mode  :character   Post          : 9          Median :2.000   
##                     Ralston Purina: 8          Mean   :2.227   
##                     Quaker Oats   : 7          3rd Qu.:3.000   
##                     Nabisco       : 6          Max.   :3.000   
##      weight          cups            rating         calories     
##  Min.   :0.50   Min.   :0.2500   Min.   :18.04   Min.   : 50.0   
##  1st Qu.:1.00   1st Qu.:0.6700   1st Qu.:32.69   1st Qu.:100.0   
##  Median :1.00   Median :0.7500   Median :40.11   Median :110.0   
##  Mean   :1.03   Mean   :0.8207   Mean   :42.39   Mean   :107.1   
##  3rd Qu.:1.00   3rd Qu.:1.0000   3rd Qu.:50.28   3rd Qu.:110.0   
##  Max.   :1.50   Max.   :1.5000   Max.   :93.70   Max.   :160.0   
##      sugars         protein           fat          sodium      
##  Min.   : 0.00   Min.   :1.000   Min.   :0.0   Min.   :  0.0   
##  1st Qu.: 3.00   1st Qu.:2.000   1st Qu.:0.0   1st Qu.:135.0   
##  Median : 7.00   Median :2.000   Median :1.0   Median :180.0   
##  Mean   : 7.08   Mean   :2.493   Mean   :1.0   Mean   :163.9   
##  3rd Qu.:11.00   3rd Qu.:3.000   3rd Qu.:1.5   3rd Qu.:215.0   
##  Max.   :15.00   Max.   :6.000   Max.   :5.0   Max.   :320.0   
##      fiber        
##  Min.   : 0.000   
##  1st Qu.: 1.000   
##  Median : 2.000   
##  Mean   : 2.173   
##  3rd Qu.: 3.000   
##  Max.   :14.000 

It might be nice to just filter that one out. Using filter, we just need to provide a true/false 
statement using some operator. The following list covers most operators in R: 

• ==: “equal to” (note that you need two equals signs) 
• <: “less than” 
• <=: “less than or equal to” 
• >: “greater than” 
• >=: “greater than or equal to” 
• !=: “not equal to” 

So with this, we can use the true/false statement type == "C" or type != "H" and it’ll filter 
everything out: 
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cereal %>% 
    filter(type != "H") %>% 
    print(n = 5) 

## # A tibble: 74 x 13 
##                        name            mfr   type shelf weight  cups 
##                       <chr>         <fctr> <fctr> <int>  <dbl> <dbl> 
## 1                 100% Bran        Nabisco      C     3      1  0.33 
## 2         100% Natural Bran    Quaker Oats      C     3      1  1.00 
## 3                  All-Bran      Kellogg's      C     3      1  0.33 
## 4 All-Bran with Extra Fiber      Kellogg's      C     3      1  0.50 
## 5            Almond Delight Ralston Purina      C     3      1  0.75 
## # ... with 69 more rows, and 7 more variables: rating <dbl>, 
## #   calories <int>, sugars <int>, protein <int>, fat <int>, sodium <int>, 
## #   fiber <dbl> 

Poof! That hot cereal is gone, and we’re left with the 74 remaining ones. 

Just as we can put multiple mutate functions combined into one, we can do the same thing with 
filter. Let’s say we want to get rid of the hot cereal and only keep anything with less than 7 
grams of sugar per serving. All we need to do is separate them with a comma: 

cereal %>% 
    filter(type != "H", sugars < 7) %>% 
    print() 

## # A tibble: 35 x 13 
##                         name            mfr   type shelf weight  cups 
##                        <chr>         <fctr> <fctr> <int>  <dbl> <dbl> 
##  1                 100% Bran        Nabisco      C     3      1  0.33 
##  2                  All-Bran      Kellogg's      C     3      1  0.33 
##  3 All-Bran with Extra Fiber      Kellogg's      C     3      1  0.50 
##  4                 Bran Chex Ralston Purina      C     1      1  0.67 
##  5               Bran Flakes           Post      C     3      1  0.67 
##  6                  Cheerios  General Mills      C     1      1  1.25 
##  7                 Corn Chex Ralston Purina      C     1      1  1.00 
##  8               Corn Flakes      Kellogg's      C     1      1  1.00 
##  9                   Crispix      Kellogg's      C     3      1  1.00 
## 10               Double Chex Ralston Purina      C     3      1  0.75 
## # ... with 25 more rows, and 7 more variables: rating <dbl>, 
## #   calories <int>, sugars <int>, protein <int>, fat <int>, sodium <int>, 
## #   fiber <dbl> 

We’re left with 35 cereals now, just the cold cereals with less than 7 grams of sugar. We can use 
this technique to stack multiple filters, such as keeping just the cold cereals that have between 
6 and 8 grams of sugar. 

cereal %>% 
    filter(type != "H", sugars >= 6, sugars <= 8) %>% 
    print() 
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## # A tibble: 16 x 13 
##                           name            mfr   type shelf weight  cups 
##                          <chr>         <fctr> <fctr> <int>  <dbl> <dbl> 
##  1                   100% Bran        Nabisco      C     3   1.00  0.33 
##  2           100% Natural Bran    Quaker Oats      C     3   1.00  1.00 
##  3              Almond Delight Ralston Purina      C     3   1.00  0.75 
##  4                     Basic 4  General Mills      C     3   1.33  0.75 
##  5                   Bran Chex Ralston Purina      C     1   1.00  0.67 
##  6                    Clusters  General Mills      C     3   1.00  0.50 
##  7          Cracklin' Oat Bran      Kellogg's      C     3   1.00  0.50 
##  8         Frosted Mini-Wheats      Kellogg's      C     2   1.00  0.80 
##  9 Just Right Crunchy  Nuggets      Kellogg's      C     3   1.00  1.00 
## 10                        Life    Quaker Oats      C     2   1.00  0.67 
## 11        Multi-Grain Cheerios  General Mills      C     1   1.00  1.00 
## 12   Nutri-Grain Almond-Raisin      Kellogg's      C     3   1.33  0.67 
## 13          Quaker Oat Squares    Quaker Oats      C     3   1.00  0.50 
## 14             Raisin Nut Bran  General Mills      C     3   1.00  0.50 
## 15              Raisin Squares      Kellogg's      C     3   1.00  0.50 
## 16         Wheaties Honey Gold  General Mills      C     1   1.00  0.75 
## # ... with 7 more variables: rating <dbl>, calories <int>, sugars <int>, 
## #   protein <int>, fat <int>, sodium <int>, fiber <dbl> 

That leaves just 16 of them. What if you wanted to do the opposite, and look at cereals at the 
extremes, say with either 0 or 14 or more grams? Here, no cereal will satisfy both constraints 
since they are mutually exclusive. But some will satisfy one or the other, so we need to tell filter 
to do an “or”. This is done using the vertical bar | (on my keyboard is the key right above the 
“enter” key, when holding “shift”) instead of a comma. When R returns rows that satisfy either 
the left or the right filter. 

cereal %>% 
    filter(type != "H", sugars == 0 | sugars >= 14) %>% 
    print(n = 5) 

## # A tibble: 11 x 13 
##                        name         mfr   type shelf weight  cups   rating 
##                       <chr>      <fctr> <fctr> <int>  <dbl> <dbl>    <dbl> 
## 1 All-Bran with Extra Fiber   Kellogg's      C     3   1.00  0.50 93.70491 
## 2               Apple Jacks   Kellogg's      C     2   1.00  1.00 33.17409 
## 3              Golden Crisp        Post      C     1   1.00  0.88 35.25244 
## 4     Post Nat. Raisin Bran        Post      C     3   1.33  0.67 37.84059 
## 5               Puffed Rice Quaker Oats      C     3   0.50  1.00 60.75611 
## # ... with 6 more rows, and 6 more variables: calories <int>, 
## #   sugars <int>, protein <int>, fat <int>, sodium <int>, fiber <dbl> 

Note that here, the type != "H" gets evaluated separately. So this filter returns rows that are 
not hot cereals and have either 0 or 14 or more grams of sugar. 

So what if we wanted to show just the three smallest manufacturers of cereal? You might be 
tempted to do something like this, stringing together a couple “or” statements: 
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cereal %>% 
    filter(mfr == "Nabisco" | mfr == "Quaker Oats" | mfr == "Ralston Purina") 
%>% 
    print(n = 5) 

## # A tibble: 21 x 13 
##                name            mfr   type shelf weight  cups   rating 
##               <chr>         <fctr> <fctr> <int>  <dbl> <dbl>    <dbl> 
## 1         100% Bran        Nabisco      C     3      1  0.33 68.40297 
## 2 100% Natural Bran    Quaker Oats      C     3      1  1.00 33.98368 
## 3    Almond Delight Ralston Purina      C     3      1  0.75 34.38484 
## 4         Bran Chex Ralston Purina      C     1      1  0.67 49.12025 
## 5      Cap'n'Crunch    Quaker Oats      C     2      1  0.75 18.04285 
## # ... with 16 more rows, and 6 more variables: calories <int>, 
## #   sugars <int>, protein <int>, fat <int>, sodium <int>, fiber <dbl> 

This works just fine, but it seems a but cumbersome, especially if the list of factors you want to 
show is long. We can actually use a different operator, the fancy looking %in%, which will check 
whether something exists inside of a list. On the left we put the column we want to filter by and 
on the right we supply a list of strings we want it to look through. 

cereal %>% 
    filter(mfr %in% c("Nabisco", "Quaker Oats", "Ralston Purina")) %>% 
    print(n = 5) 

## # A tibble: 21 x 13 
##                name            mfr   type shelf weight  cups   rating 
##               <chr>         <fctr> <fctr> <int>  <dbl> <dbl>    <dbl> 
## 1         100% Bran        Nabisco      C     3      1  0.33 68.40297 
## 2 100% Natural Bran    Quaker Oats      C     3      1  1.00 33.98368 
## 3    Almond Delight Ralston Purina      C     3      1  0.75 34.38484 
## 4         Bran Chex Ralston Purina      C     1      1  0.67 49.12025 
## 5      Cap'n'Crunch    Quaker Oats      C     2      1  0.75 18.04285 
## # ... with 16 more rows, and 6 more variables: calories <int>, 
## #   sugars <int>, protein <int>, fat <int>, sodium <int>, fiber <dbl> 

Incidentally, you can reverse this, and just show rows where the manufacturer is not one of those 
three by simply putting an exclamation point before the column name: 

cereal %>% 
    filter(!mfr %in% c("Nabisco", "Quaker Oats", "Ralston Purina")) %>% 
    print(n = 5) 

## # A tibble: 54 x 13 
##                        name           mfr   type shelf weight  cups 
##                       <chr>        <fctr> <fctr> <int>  <dbl> <dbl> 
## 1                  All-Bran     Kellogg's      C     3   1.00  0.33 
## 2 All-Bran with Extra Fiber     Kellogg's      C     3   1.00  0.50 
## 3   Apple Cinnamon Cheerios General Mills      C     1   1.00  0.75 
## 4               Apple Jacks     Kellogg's      C     2   1.00  1.00 
## 5                   Basic 4 General Mills      C     3   1.33  0.75 
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## # ... with 49 more rows, and 7 more variables: rating <dbl>, 
## #   calories <int>, sugars <int>, protein <int>, fat <int>, sodium <int>, 
## #   fiber <dbl> 

So the filter is powerful. I use it all the time to make various subsets of my data. It does exactly 
what I want it to do, and while you may have to type a couple symbols you don’t normally do, 
the syntax is easy to pick up. 

5.2  CHANGING COLUMN NAMES 

The final thing I’d like to show for this workshop is how to rename columns. There are lots of 
reasons for why you might want to do this. In the ggplot2 workshop, we saw how to do this on 
the fly within a block of ggplot code, but sometimes you want to make it a permanent change 
to your data. Using the tools you have now, you might be tempted to simply create a new column 
that’s a copy of the old one. 

cereal %>% 
    mutate(manufacturer = mfr) %>% 
    print(n = 5) 

But the problem is you end up with two identical columns. Okay fine, we can then remove the 
old one: 

cereal %>% 
    mutate(manufacturer = mfr) %>% 
    select(-mfr) %>% 
    print(n = 5) 

## # A tibble: 75 x 13 
##                        name   type shelf weight  cups   rating calories 
##                       <chr> <fctr> <int>  <dbl> <dbl>    <dbl>    <int> 
## 1                 100% Bran      C     3      1  0.33 68.40297       70 
## 2         100% Natural Bran      C     3      1  1.00 33.98368      120 
## 3                  All-Bran      C     3      1  0.33 59.42551       70 
## 4 All-Bran with Extra Fiber      C     3      1  0.50 93.70491       50 
## 5            Almond Delight      C     3      1  0.75 34.38484      110 
## # ... with 70 more rows, and 6 more variables: sugars <int>, 
## #   protein <int>, fat <int>, sodium <int>, fiber <dbl>, 
## #   manufacturer <fctr> 

Okay, but now the columns are out of order. You’ll have to then put them back in the correct 
order: 

cereal %>% 
    mutate(manufacturer = mfr) %>% 
    select(name, manufacturer, everything(), -mfr) %>% 
    print(n = 5) 

## # A tibble: 75 x 13 
##                        name   manufacturer   type shelf weight  cups 



 orcid.org/0000-0002-9185-0048 32 

##                       <chr>         <fctr> <fctr> <int>  <dbl> <dbl> 
## 1                 100% Bran        Nabisco      C     3      1  0.33 
## 2         100% Natural Bran    Quaker Oats      C     3      1  1.00 
## 3                  All-Bran      Kellogg's      C     3      1  0.33 
## 4 All-Bran with Extra Fiber      Kellogg's      C     3      1  0.50 
## 5            Almond Delight Ralston Purina      C     3      1  0.75 
## # ... with 70 more rows, and 7 more variables: rating <dbl>, 
## #   calories <int>, sugars <int>, protein <int>, fat <int>, sodium <int>, 
## #   fiber <dbl> 

That seems like a lot of work, and it’s quite error prone if you have lots of columns and lots of 
changes to make. Fortunately, dplyr has the rename function, which does all this in one simple 
line of code: 

cereal %>% 
    rename(manufacturer = mfr)  %>% 
    print(n = 5) 

## # A tibble: 75 x 13 
##                        name   manufacturer   type shelf weight  cups 
##                       <chr>         <fctr> <fctr> <int>  <dbl> <dbl> 
## 1                 100% Bran        Nabisco      C     3      1  0.33 
## 2         100% Natural Bran    Quaker Oats      C     3      1  1.00 
## 3                  All-Bran      Kellogg's      C     3      1  0.33 
## 4 All-Bran with Extra Fiber      Kellogg's      C     3      1  0.50 
## 5            Almond Delight Ralston Purina      C     3      1  0.75 
## # ... with 70 more rows, and 7 more variables: rating <dbl>, 
## #   calories <int>, sugars <int>, protein <int>, fat <int>, sodium <int>, 
## #   fiber <dbl> 

Poof. It’s as easy as that. 

Technically, you can actually rename columns within select. So if you really want to combine 
renaming, reordering, and removing columns at once, you can. You do this by putting the new 
name in ticks (the thing next to the “1” key with the tilde) and an equals sign before the old 
name. 

cereal %>% 
    select(name, `manufacturer` = mfr, rating) %>% 
    print() 

## # A tibble: 75 x 3 
##                         name   manufacturer   rating 
##                        <chr>         <fctr>    <dbl> 
##  1                 100% Bran        Nabisco 68.40297 
##  2         100% Natural Bran    Quaker Oats 33.98368 
##  3                  All-Bran      Kellogg's 59.42551 
##  4 All-Bran with Extra Fiber      Kellogg's 93.70491 
##  5            Almond Delight Ralston Purina 34.38484 
##  6   Apple Cinnamon Cheerios  General Mills 29.50954 



 orcid.org/0000-0002-9185-0048 33 

##  7               Apple Jacks      Kellogg's 33.17409 
##  8                   Basic 4  General Mills 37.03856 
##  9                 Bran Chex Ralston Purina 49.12025 
## 10               Bran Flakes           Post 53.31381 
## # ... with 65 more rows 

I don’t really use this very often because I like to make the renaming explicit, but it’s a nice 
shortcut if you need it. 

5.2.1  Your tu rn!  

5.2.1.1 The challenge 

Try doing the following steps all as one series of piped functions. There’s no strict order that 
they need to apply so you’re free to organize the code in a way that makes sense to you. 

1. Read in the cereal data frame, making sure that the type and mfr columns are read in as 
factors. 

2. Create a column for the amount of sugar per cup. 

3. Get rid of all the columns except the name of the cereal, the manufacturer, and the new 
column with the amount of cereal per cup. 

4. Change the mfr column so that full names are used instead of just abbreviations. 

5. Order the factors in the mfr column in order of frequency. 

6. Sort the dataframe by how much sugar there is per cup. 

7. Rename the mfr column to manufactuer 

8. Only display cereals where the rating is higher than the average. (Hint: you may need the 
mean() function.) 

5.2.1.2 The solution 

Here is my complete block of code. I’ve explained by process underneath. 

# Read it in as a tab-delineated file 
cereal <- read_delim("/Users/joeystanley/Desktop/github/joeystanley/data/cere
al.txt",  
           delim = "\t", 
           # Make sure the column types are correct. 
           col_types = cols( 
               type = col_factor(levels = NULL), 
               mfr  = col_factor(levels = NULL) 
           )) %>% 
    # Rename manufacturer 
    rename(manufacturer = mfr) %>% 
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    # Only show those that are better than average rating. 
    filter(rating > mean(rating)) %>% 
 
    # create the sugar_per_cup variable 
    mutate(sugar_per_cup = sugars / cups, 
           # Recode the manufacturers 
           manufacturer = fct_recode(manufacturer, 
                            "Kellogg's" = "K", 
                            "General Mills" = "G", 
                            "Post" = "P", 
                            "Quaker Oats" = "Q", 
                            "Ralston Purina" = "R", 
                            "Nabisco" = "N"), 
           # Put the manufacturers in order of frequency.  
           manufacturer = fct_infreq(manufacturer)) %>% 
     
    # Sort the rows in order of sugars 
    arrange(-sugar_per_cup) %>% 
    print(n = 5) 

## # A tibble: 28 x 14 
##                 name manufacturer   type shelf weight  cups   rating 
##                <chr>       <fctr> <fctr> <int>  <dbl> <dbl>    <dbl> 
## 1          100% Bran      Nabisco      C     3      1  0.33 68.40297 
## 2           All-Bran    Kellogg's      C     3      1  0.33 59.42551 
## 3 Great Grains Pecan         Post      C     3      1  0.33 45.81172 
## 4         Grape-Nuts         Post      C     3      1  0.25 53.37101 
## 5 Quaker Oat Squares  Quaker Oats      C     3      1  0.50 49.51187 
## # ... with 23 more rows, and 7 more variables: calories <int>, 
## #   sugars <int>, protein <int>, fat <int>, sodium <int>, fiber <dbl>, 
## #   sugar_per_cup <dbl> 

# Plot it 
ggplot(cereal, aes(manufacturer)) + 
        geom_bar() 
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Of course, the first thing I do is read in the data, but the very next step I like to do is rename the 
columns. They way I don’t refer to mfr for part of the block and manufacturer in another part. 

I then filter the data to only show those with a higher-than-average rating. The filter is early in 
the block for two reasons. First, it cuts down on the number of remaining rows in the dataset 
early on. In theory, this makes the whole block of code run faster because the subsequent 
functions don’t have to work with quite as much data. In small datasets like this, the difference 
is negligible, but if you work with very large datasets and run complicated functions, this can 
save a lot of time. 

The second reason is that it comes early, specifically, before sorting the manufacturer levels 
frequency, is that the order of the manufacturers does in fact change after we’ve applied the filter. 
If you compare this to the following very similar block that has been modified so that the filter 
comes last, you’ll see that the bars are in a different order, namely the original order of how 
many brands of cereal there are per company. 

# Read it in as a tab-delineated file 
cereal <- read_delim("/Users/joeystanley/Desktop/github/joeystanley/data/cere
al.txt",  
           delim = "\t", 
           # Make sure the column types are correct. 
           col_types = cols( 
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               type = col_factor(levels = NULL), 
               mfr  = col_factor(levels = NULL) 
           )) %>% 
    # Rename manufacturer 
    rename(manufacturer = mfr) %>% 
     
    # create the sugar_per_cup variable 
    mutate(sugar_per_cup = sugars / cups, 
           # Recode the manufacturers 
           manufacturer = fct_recode(manufacturer, 
                            "Kellogg's" = "K", 
                            "General Mills" = "G", 
                            "Post" = "P", 
                            "Quaker Oats" = "Q", 
                            "Ralston Purina" = "R", 
                            "Nabisco" = "N"), 
           # Put the manufacturers in order of frequency.  
           manufacturer = fct_infreq(manufacturer)) %>% 
     
    # Sort the rows in order of sugars 
    arrange(-sugar_per_cup) %>% 
     
     # Only show those that are better than average rating. 
    filter(rating > mean(rating)) %>% 
 
    print() 

## # A tibble: 28 x 14 
##                   name   manufacturer   type shelf weight  cups   rating 
##                  <chr>         <fctr> <fctr> <int>  <dbl> <dbl>    <dbl> 
##  1           100% Bran        Nabisco      C     3      1  0.33 68.40297 
##  2            All-Bran      Kellogg's      C     3      1  0.33 59.42551 
##  3  Great Grains Pecan           Post      C     3      1  0.33 45.81172 
##  4          Grape-Nuts           Post      C     3      1  0.25 53.37101 
##  5  Quaker Oat Squares    Quaker Oats      C     3      1  0.50 49.51187 
##  6      Raisin Squares      Kellogg's      C     3      1  0.50 55.33314 
##  7           Bran Chex Ralston Purina      C     1      1  0.67 49.12025 
##  8                Life    Quaker Oats      C     2      1  0.67 45.32807 
##  9 Frosted Mini-Wheats      Kellogg's      C     2      1  0.80 58.34514 
## 10         Bran Flakes           Post      C     3      1  0.67 53.31381 
## # ... with 18 more rows, and 7 more variables: calories <int>, 
## #   sugars <int>, protein <int>, fat <int>, sodium <int>, fiber <dbl>, 
## #   sugar_per_cup <dbl> 

# Plot it 
ggplot(cereal, aes(manufacturer)) + 
        geom_bar() 
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(Incidentally, we learn a lot about Nabisco and General Mills through this: Nabisco has relatively 
few kinds of cereal, but they tend to be rated pretty high, while General Mills has a lot that get 
generally lower ratings.) 

6 FINAL REMARKS 

This workshops has covered a lot of material. But, it’s clear that the tidyverse offers a lot for you. 
You can manipulate and clean your data all you want, often in a single block of code. The code 
is easier to type and it’s easier for you to read later on when you come back to it. 

In a future tidyverse workshop, we’ll cover even more powerful functions like how to merge 
tables together, perform functions on groups of data (such as only showing the top three cereals 
for each manufacturer), and reshaping your data from “tall” to “wide” format. But for now, I 
hope what you’ve learned here will be useful for you and your data. 


