
orcid.org/0000-0002-9185-0048 1

Communicate with your Audience
Intro to RMarkdown

Joey Stanley
Doctoral Candidate in Linguistics, University of Georgia
joeystanley.com

orcid.org/0000-0002-9185-0048

Presented at the UGA Willson Center DigiLab
Friday, March 9, 2018

This is the eighth installment of the R workshop series in Spring 2018 and introduces
RMarkdown. This document will cover these introductory topics: (1) an introduction to the tool
and why it might be handy; (2) the “narrative” or the non-code portion of the document and
how to format it; (3) inserting code and how to modify code block; and (4) output formats and
ways to modify how the final document looks.

Download this PDF from my website at

joeystanley.com/r2018

An Introduction to R: Part 2
 by Joseph A. Stanley is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License.	

orcid.org/0000-0002-9185-0048 2

1 INTRODUCTION

1.1 WHAT IS R MARKDOWN?

So far, most of what you’ve done in R has been with R scripts, which is perfectly fine. But
sometimes if you’re working on a particular project you might end up with one very long script.
You might add some structure to the script using headers, and you can add comments to explain
what code does, but after a while it can get unwieldy because there’s no narrative in your script.
You forget why do did what you did and what things you learned from it. For many of my
projects, I have an accompanying file where keep all my notes, kind of like a journal of what I did
that day. But even then, there’s often a disconnect between what’s in my notes and what is in
my R script.

R Markdown is a good solution to this problem. Essentially, it’s a way to combine notes and an
R script in one file. The benefit of this is that you can type all the prose you want and then put
some relevant block of R code and all the output will be right there. Let me give you several
examples of things I do in R Markdown.

1. When I’m starting a new project, I do a lot of exploratory analysis. I create lots of plots and
run lots of statistical models trying to get a feel for what I can find in my data. These R
scripts tend to be very long because I often create lots and lots of plots and when I go
through the code I can never remember which one is the one I want and waste a lot of time
executing code just to find the plot I want.

 With R Markdown, I can organize all this into one coherant file. I turn this into a journal
by explaing what I’m doing as I do it. I run code and then leave some commentary, including
things I learned, mistakes, and what I want to try next. In the end, I have a long document
with lots of code, but I can clearly trace my thought process the whole time.

2. When I have a more or less finished idea, I often write a draft of a research paper in the
form of an R Markdown file. I only keep the plots and statistical models I might want to
include in a real presentation or publication. This is essentially a cleaned up version of the
“journal”-style format above, but instead of recording my thought process as I learn
something, it’s more of an explanation to an unknown audience. When that is done, the
transition to paper or presentation is easier because I already have the draft done. It also
saves some headache later because I know exactly where to go if I need to change a plot or
something.

3. Another major application of R Markdown is to produce professional-looking documents
like the one you’re reading right now. In fact, all of the handouts I’ve done for these
workshops were written entirely in R Markdown. When you work with R Markdown, you’re
working in RStudio, but you then “knit” the files up and they produce HTML files, PDFs,
or Microsoft Word files. If you have a way to host them, the HTML files can easily be put
online for others to see. Saving the file as a PDFs is very similar to using LaTeX, if that’s

orcid.org/0000-0002-9185-0048 3

the way you want to go. In Word, everything comes with preset formatting, but if you’ve
used styles in Word it’s easy enough to change those. Regardless of what format you use,
they’re automatically formatted and the code, plots, and other output are automatically
included, so your methods for producing some plot or analysis are immediately transparent.

4. I’m working on a big project right now with a team of other researchers. The dataset that
we’re sharing on GoogleDrive is growing still, usually every month but sometimes as often
as every week it’ll update. With R Markdown I can write a document that will read in the
data and do visualizations and other analysis. Every time I run the file, it’ll automatically
read in the latest dataset and create all the plots and run the statistical models on the newest
data all at once. This is a pretty handy way to make sure I’m staying current with my data.

5. I recently did some research and I wanted to summarize what my findings for someone.
Using R Markdown, I could create a file that loaded my data and essentially walked through
the analysis step by step. I could then share the resulting HTML output as a stand-alone
file. That way, they could see the code and plots without me having to share the data itself.
(We ended up co-authoring, so they got access the data anyway.)

So R Markdown is quite handy, and makes for a great bridge between working in R and putting
together a paper. As far as I’m aware, not too many publishing companies accept files in R
Markdown, but some people have written entire books using the slightly more advanced
bookdown, like this super meta book on bookdown written in bookdown1. You can also make
slideshows with RMarkdown and incorporate Shiny elements in them as well.

1.2 WHAT TO EXPECT

Today’s workshop will cover the basics to get you going in R Markdown. Most of what makes an
R Markdown file so good is whatever R code you want to incorporate into the file, so you’re on
your own as far as content. We’ll divide the workshop into three sections: the narrative, the code,
and output. The narrative portion of your document is all the stuff that isn’t R code. The code
blocks are marked chunks of R code that execute as if they were in an R script. The output is
mostly controlled in the header. We’ll look at formatting and some of the options that are
available for each of these.

1.3 GETTING STARTED

To get started with R Markdown, open RStudio and go to File -> New File -> R Markdown.
Or, you can click the little downward pointing arrow next to the New Document Icon (the one
with the green plus at the top left of RStudio) and choose R Markdown.

1 https://bookdown.org/yihui/bookdown/

orcid.org/0000-0002-9185-0048 4

If you don’t have the required packages for R Markdown, it’ll prompt you to install or update.
As far as I can tell, the list of essential ones are rmarkdown, formatR, caTools, bitops, tools,
utils, knitr, yaml, htmltools, evaluate, base64enc, jsonlite, rprojroot, mime, methods,
stringr.

Assuming everything works for you, a window will pop up that will ask you for some details
about your new file. Give it whatever title you want and you can put your name as the author.
For now, let’s stick with the default output format, HTML, because it makes things a little bit
quicker. On the left pane, we’ll just do a Document, but here’s how you would start a slideshow
or a file with Shiny elements incorporated into it.

orcid.org/0000-0002-9185-0048 5

When you click “OK”, you’ll see a new tab appear in RStudio with some boilerplate code. The
top portion will have some metadata in a block of code. If you look closely, this portion has a
line with three dashes at the top and bottom of the block.

title: "My Awesome RMarkdown File"
author: "Joey Stanley"
date: "3/9/2018"
output: html_documente

This is the header. For now, it just contains the metadata we put in at the beginning. We’ll get to
that at the end of this workshop. The rest of the document contains some example code that
explains how the document works and how to get it to run. We’ll explain this and much more
in this workshop.

Just to give you an idea of what this document looks like, let’s “knit” it up as an HTML file.
When you have an RMarkdown file open, there should be some new buttons and things to click
just above your script (but below the tabs themselves). One of these is a little blue ball of yarn
with the label “Knit.” Go ahead and click that. (You’ll be prompted to save your file if you haven’t
already.) You’ll see R thinking for a little bit, and then a new window will pop up.

As you can see, the title, author, and date are automatically included at the top, and then there’s
the body of the document. There are various headers, code blocks, output, and narrative. This is

orcid.org/0000-0002-9185-0048 6

what a finished R Markdown file looks like. It’s simple, but it is complete. So now let’s dive in
and see if we can understand more about what’s going on here.

2 THE NARRATIVE

Let’s get started with what is probably the most straightforward aspect of RMarkdown files: the
text. I’m calling this portion the narrative because it is where you narrate what is happening in
your code block (well, I do at least).

R Markdown is actually just an extension of another language called Markdown. Both of these are
kinds of markup languages that lets you add simple formatting to plain text. It’s lightweight so it’s
easy to learn and easy to read documents written in Markdown. It’s pretty universal (Reddit and
Wikipedia both use it or forms of it) so once you use learn it you can easily transfer skills from
one place to another and it’s not dependent on some operating system or specific software. Also,
because it’s so easy and universal, it’s predicted to have some decent longevity, which is a big
deal in computer code.

The way you include narrative in an R Markdown file is, quite simply, to just start typing. It’ll
automatically render correctly in the final output. To start a new paragraph, use two spaces at
the end of the line or, more simply, just put a blank line between each paragraph in your code.
There are just a couple formatting things you might want to add to make the document a little
better.

2.1 FORMATTING

Simple formatting is straightforward. To put something in italics, put it in asterisks, *like
this*. To make something bold, use **two asterisks**. As you might expect, bold and italics
just uses ***three***. (Alternatively, you can use _underscores_ instead of asterisks and it’ll
work just the same.) You’ll notice that RStudio automatically changes the color of the text within
the file itself, which is handy. But when you knit the file, the color will go away, but the proper
formatting will remain.

Some other things you might use are strikethroughs which are done with ~~double tildes~~
and superscripts1 with ^double carats^. The one I probably use the most is putting something

orcid.org/0000-0002-9185-0048 7

in a fixed-width font, which I use when I use in-line code snippets (like x <- c(1:10)) or
when I refer to functions by name (like mutate or summary).

There are a couple special characters you might want to include. The first, em-dashes (—), which
are done with three hyphens in a row: ---, are for parentheticals that you want to pack more of
a punch than parentheses. A similar character is the en-dash (–), which can be created with two
hyphens --, which is used in the place of em-dashes in the UK. They’re also used in number
ranges, so “3-5” is “three dash five,” but “3–5” is “three through five”. Finally, you may want to
include ellipses (…), which, as you might expect, is just three periods ... in a row.

2.2 HEADERS

You can organize your document using headers, up to six levels deep. To do this, type the name
of the header you want, and put between 1 and 6 pound symbols at the start of the line to
correspond to levels 1 through 6:

Header 1

Header 2

Header 3

Header 4

Header 5

Header 6

Not only do these give your document structure, but they’re also used as entries in the table of
contents if you want one.

2.3 LARGER STRUCTURES

Things like bold and italics are generally used at the individual word level, but for some parts of
your document, you may need to format larger chunks of text.

2.3.1 Block quotes

One example is how to include a quote like this:

“The problem, once solved, is simple.”

Do do this, all you need to do is start the line with a single “greater than” symbol (>):

> "The problem, once solved, is simple."

This will automatically format it a little differently to make it stand out.

orcid.org/0000-0002-9185-0048 8

2.3.2 Unordered l ist

You may also want to add a bulleted list. You can do that by starting each line with an asterisk
and sub-items with a plus.

* Item 1
* Item 2

• Item 1
• Item 2

2.3.3 Ordered l is t

You can add a numbered list as well by adding a 1. at the start of each line. What’s cool about
these is that you just need to put the number 1 and it’ll number them automatically for you. This
makes it easy to reorder the items without having to constantly change the numbers manually.

1. Item 1
1. Item 2

1. Item 1
2. Item 2

One problem I’ve had is sometimes I want multi-paragraph text as one of the numbered items.
But when you do that, the numbers restart:

1. Something cool here.

Additional commentary about it.

1. Something else that's cool here.

1. Something cool here.

Additional commentary about it.

1. Something else that’s cool here.

No, that doesn’t seem to work out well. The solution is to indent the new paragraph using four
spaces. That’ll do exactly what you want it to do.

1. Something cool here.

 Additional commentary about it.

1. Something else that's cool here.

1. Something cool here.

 Additional commentary about it.

orcid.org/0000-0002-9185-0048 9

2. Something else that’s cool here.

Note that it’s not just that the four spaces happen to line up with the start of the paragraph.
Instead, RMarkdown interprets the four spaces as a specific formatting code and makes the
appropriate changes to that paragraph but also to the numbering. Later on, when we see how to
add actual R code, you can do the same trick and insert as much material as you want and it’ll
work out just as you want it to. Pretty slick.

2.3.4 Blocks of code

Finally, sometimes you might just want to put a whole paragraph of fixed-width code. I do this
every time you see example code.

To do this, just start each line with four spaces or an indent.

RStudio interprets that accordingly (and notices you’re not in a numbered list), and puts the
whole thing indented and in the right font.

2.4 L INKS

Sometimes you want to include links to websites or includes pictures in your files. This section
briefly covers how to do that.

2.4.1 Hyperlinks

If you want to include hyperlinks, you need to include the text that you want to be highlighted
and the link you want to send people do. The syntax is to first put the text in square brackets [
] and immediately after that put the full url in parenthesis ().

So the code for this link is [this link](https://en.wikipedia.org/wiki/Hyperlink).

2.4.2 Images

Images are similar to hyperlinks, but instead of including some text, you put nothing between
the square brackets, and instead of a path to a webpage, you put the path to the image on your
computer. You also need to put an exclamation point at the start, before the square brackets.

Here’s an image:

And here’s the code:

orcid.org/0000-0002-9185-0048 10

2.4.3 Your Turn!

The chal lenge

Try to recreate the following formatted text—which by the way is 100% real—using RMarkdown.

The Bulwer-Lytton Fiction Contest

Since 1982 the English Department at San Jose State University has sponsored the Bulwer-Lytton
Fiction Contest2, a whimsical literary competition that challenges entrants to compose the opening
sentence to the worst of all possible novels. The 2017 winner was submitted by Kat Russo of
Loveland, Colorado:

The elven city of Losstii faced towering sea cliffs and abutted rolling hills that in the summer were covered with
blankets of flowers and in the winter were covered with blankets, because the elves wanted to keep the flowers
warm and didn’t know much at all about gardening.

And the runner-up was by Tony Buccella of Allegany, New York:

Although in the rusty tackle-box of his mind he yearned to be a #3 buck-tail spinner, Bob knew deep down he must
accept his cruel fate as a bottom bouncer rig, forever destined to scrape the muddy bottom of the river of life.

The rules to the Bulwer-Lytton Fiction Contest are childishly simple:

• Each entry must consist of a single sentence but you may submit as many entries as you
wish. (One fellow once submitted over three thousand entries.)

• Sentences may be of any length but we strongly recommend that entries not go beyond
50 or 60 words. Entries must be “original” (as it were) and previously unpublished.

• Surface mail entries should be submitted on index cards, the sentence on one side and the
entrant’s name, address, and phone number on the other.

• E-mail entries should be in the body of the message, not in an attachment (and it would
be really swell if you submitted your entries in Arial 12 font).

• The official deadline is April 15 (a date that Americans associate with painful submissions
and making up bad stories). The actual deadline is June 30.

• Finally, in keeping with the gravitas, high seriousness, and general bignitude of the contest,
the grand prize winner will receive… a pittance.

2 http://www.bulwer-lytton.com/

orcid.org/0000-0002-9185-0048 11

If you would like to submit an entry to the contest, or you would like to contact the Grand
Panjandrum himself3, you have two main options.

1. You may email Scott Rice at srice@pacbell.net .

2. You may also send your contest entries, requests, and various and sundry truckling to:

 Bulwer-Lytton Fiction Contest

 Department of English

 San Jose State University

 San Jose, CA 95192-0090

Please include your name, phone number, and addresses—Gastropoda and e-mail. (Note: this
data is for our contact information, not for public consumption.)

The so lution

Here is the code for the text.

The Bulwer-Lytton Fiction Contest

Since 1982 the English Department at San Jose State University has sponsored
the [Bulwer-Lytton Fiction Contest](http://www.bulwer-lytton.com/), a whimsic
al literary competition that challenges entrants to compose the opening sente
nce to the worst of all possible novels. The 2017 winner was submitted by Kat
Russo of Loveland, Colorado:

> The elven city of Losstii faced towering sea cliffs and abutted rolling hil
ls that in the summer were covered with blankets of flowers and in the winter
were covered with blankets, because the elves wanted to keep the flowers warm
and didn’t know much at all about gardening.

And the runner-up was by Tony Buccella of Allegany, New York:

> Although in the rusty tackle-box of his mind he yearned to be a #3 buck-tai
l spinner, Bob knew deep down he must accept his cruel fate as a bottom bounc
er rig, forever destined to scrape the muddy bottom of the river of life.

The rules to the Bulwer-Lytton Fiction Contest are childishly simple:

* Each entry must consist of a single sentence but you may submit as many ent
ries as you wish. (One fellow once submitted over *three thousand* entries.)

3 http://www.people.com/people/archive/article/0,,20084768,00.html

orcid.org/0000-0002-9185-0048 12

* Sentences may be of any length **but we strongly recommend that entries not
go beyond 50 or 60 words**. Entries must be "original" (as it were) and previ
ously unpublished.

* Surface mail entries should be submitted on index cards, the sentence on on
e side and the entrant's name, address, and phone number on the other.

* E-mail entries should be in the body of the message, **not in an attachment
** (and it would be really swell if you submitted your entries in Arial 12 fo
nt).

* The *official* deadline is April 15 (a date that Americans associate with p
ainful submissions and making up bad stories). The *actual* deadline is June
30.

* Finally, in keeping with the gravitas, high seriousness, and general bignit
ude of the contest, the grand prize winner will receive… a pittance.

If you would like to submit an entry to the contest, or you would like to con
tact [the Grand Panjandrum himself](http://www.people.com/people/archive/arti
cle/0,,20084768,00.html), you have two main options.

1. You may email Scott Rice at srice@pacbell.net .

1. You may also send your contest entries, requests, and various and sundry t
ruckling to:

 Bulwer-Lytton Fiction Contest

 Department of English

 San Jose State University

 San Jose, CA 95192-0090

Please include your name, phone number, and addresses---Gastropoda and e-mail
. (Note: this data is for our contact information, not for public consumption
.)

Interestingly, the email was automatically converted into a hyperlink without me having to do
anything.

orcid.org/0000-0002-9185-0048 13

3 CODE BLOCKS

So the narrative is relatively straightforward. However, the reason you’re using RMarkdown is
because you want to incorporate R code into your text. Fortunately, this is pretty easy as well.
Plus, it comes with all sorts of options so you can customize how it renders in the final product.

To include a code block, all you need to do is start and end the block with a line of three tick
marks (`), that thing that shares a key with the tilde next to the number 1 key. After the three
on the top one, you’ll need to put {r} so that RMarkdown knows to interpret what’s inside as R
code. This means you’ll also get syntax highlighting, which is always a plus.

Thus, this code

```{r} 
2 + 2 
``` 

produces this output:

2 + 2

[1] 4

Side note, there’s a keyboard shortcut for creating empty code blocks. For a Mac it’s option +
command + i and for Windows it’s control + alt + i. I’d recommend just using that every time.

Also, you can give this code block a name by typing whatever name you want after the r in the
{}. This is handy if you use R Studio’s navigation to jump around, but it’s not necessary.

The great thing about incorporating code like this is that it is regular R code and you can run it
like you would any other R code. If you do and there’s some sort of output, like a plot or a
summary table, it’ll show it to you in the RMarkdown file.

When you include code chunks like these in an RMarkdown file, the code and the output are
also displayed in the final product. So if we wanted to include a plot of 100 normally distributed
points, we could do so and it would show up.

hist(rnorm(100, 10, 2))

orcid.org/0000-0002-9185-0048 14

Of if you want to include some sort of output, like summary statistics, you can do that as well:

cereal <- read.csv("http://joeystanley.com/data/cereal.csv")
summary(cereal)

name mfr type shelf
100% Bran : 1 G:22 C:74 Min. :1.000
100% Natural Bran : 1 K:23 H: 1 1st Qu.:1.500
All-Bran : 1 N: 6 Median :2.000
All-Bran with Extra Fiber: 1 P: 9 Mean :2.227
Almond Delight : 1 Q: 7 3rd Qu.:3.000
Apple Cinnamon Cheerios : 1 R: 8 Max. :3.000
(Other) :69

The code blocks themselves can be modified though so that you have some control over how
they look. Let’s see what kinds of things you can change.

3.1 HOW THE CODE IS RUN

When you create a code block, there’s a space for you to add various options. We’ve seen this
already with the {r} at the start of the code block. The part between the brackets is where you
put the “chunk options.” This r tells R to interpret the code as R code and applies the appropriate
syntax highlighting. If you wanted to include python code or something, you can actually change
that to python and it’ll do change how the code is highlighted.

The main thing you might need to do to change how the code is run is to make the code not run.
The way to do this is by adding eval = FALSE as a chunk option, after r, and separated by a
comma:

orcid.org/0000-0002-9185-0048 15

```{r, eval = FALSE} 
2 + 2 
``` 

This will make the code block appear in your R Markdown file, but it won’t run. I use this all the
time in these R workshops. For example, I might give an example of bad code that will not run.

```{r bad, eval = FALSE} 
x = c(1,2,3,4, 
``` 

If I didn’t include eval = FALSE, R will try to run the code when it compiles the document and
it’ll throw an error. Or I might be illustrating an example and will use generic names:

```{r template, eval = FALSE} 
variable = function(argument1, argument2) 
``` 

If I know something is going to be problematic in that way and I still want to include it, this is a
great way to do so.

The last thing you might see is include = FALSE. In fact, in R Markdown file that is generated
when you create a new file, the first code block has this option. This means that the chunk will
run but it won’t be included at all in the final document. This is great for setting up global
options, but are generally reserved for more advanced settings.

3.2 HOW THE RESULTS ARE DISPLAYED

3.2.1 Hide a ll results

The other thing you might want to do with a code chunk is to modify how the results get
displayed. The main thing is that you might want to hide the results entirely. You can do this by
setting the option results = "hide".

So with this block of code, we run a summary of the cereal data we read in earlier. If you wanted
to, you could run the summary block but not actually display it. So this is the code you would
type.

```{r, results = "hide"} 
summary(cereal) 
``` 

And this is what the result would be.

summary(cereal)

The only application I see for this is if you want to include some output in the R Markdown file
itself (like in RStudio as you’re typing the code), but not include it in the document. I honestly

orcid.org/0000-0002-9185-0048 16

have never used this option and can’t think of a really good reason why you might need to. But
it’s there in case you need it.

3.2.2 Hide the code

The opposite of this would be to hide the code but display the output. This is actually super
useful for a lot of reasons. The way you do this is to add the option echo = FALSE to the options.
Here’s the code:

```{r, echo = FALSE} 
plot(cereal$fiber) 
``` 

And here’s the output:

There are two really good reasons for why you might want to do this. First, sometimes the exact
code isn’t necessary to include, or sometimes you want to create a document that actually shows
something useful from the plots and you don’t want the minutiae of the code getting in the way,
especially if it’s a very long code block.

The other case is when you actually want to display results that are different from what the code
shows. I do this all the time when I read in files from my computer, or when I need to print
something and I want to show fewer lines than the default. This works well in conjunction with
eval = FALSE so you have two blocks: one to show the code but without running it, and another
to show the results without showing the code.

For example, here’s a case where I’m reading in a file from my computer, but the path name is
super long and annoying to read and distracting from what I’m trying to do. Also, the output is
not what I would want to show because the McDonald’s menu item names are super long.

read.csv("/Users/joeystanley/Desktop/github/joeystanley/data/menu.csv")

Category Item
1 Breakfast Egg McMuffin
2 Breakfast Egg White Delight
3 Breakfast Sausage McMuffin
4 Breakfast Sausage McMuffin with Egg

orcid.org/0000-0002-9185-0048 17

5 Breakfast Sausage McMuffin with Egg Whites
6 Breakfast Steak & Egg McMuffin
7 Breakfast Bacon, Egg & Cheese Biscuit (Regular Biscuit)
8 Breakfast Bacon, Egg & Cheese Biscuit (Large Biscuit)
9 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Regular Biscuit)
10 Breakfast Bacon, Egg & Cheese Biscuit with Egg Whites (Large Biscuit)
Oz Calories Fat Sugars
1 4.8 300 13 3
2 4.8 250 8 3
3 3.9 370 23 2
4 5.7 450 28 2
5 5.7 400 23 2
6 6.5 430 23 3
7 5.3 460 26 3
8 5.8 520 30 4
9 5.4 410 20 3
10 5.9 470 25 4

As you can see that’s stupid long and takes up a lot of space, especially if this is going to be on
paper. So what I do is I read it in, shorten the menu items to just 24 characters, and print just
the first 15. I also shorten the pathname and pretend I keep all my data on the Desktop, which
is totally not true.

Category Item Oz Calories Fat Sugars
1 Breakfast Egg McMuffin 4.8 300 13 3
2 Breakfast Egg White Delight 4.8 250 8 3
3 Breakfast Sausage McMuffin 3.9 370 23 2
4 Breakfast Sausage McMuffin with Eg 5.7 450 28 2
5 Breakfast Sausage McMuffin with Eg 5.7 400 23 2
6 Breakfast Steak & Egg McMuffin 6.5 430 23 3
7 Breakfast Bacon, Egg & Cheese Bisc 5.3 460 26 3
8 Breakfast Bacon, Egg & Cheese Bisc 5.8 520 30 4
9 Breakfast Bacon, Egg & Cheese Bisc 5.4 410 20 3
10 Breakfast Bacon, Egg & Cheese Bisc 5.9 470 25 4
11 Breakfast Sausage Biscuit (Regular 4.1 430 27 2
12 Breakfast Sausage Biscuit (Large B 4.6 480 31 3
13 Breakfast Sausage Biscuit with Egg 5.7 510 33 2
14 Breakfast Sausage Biscuit with Egg 6.2 570 37 3
15 Breakfast Sausage Biscuit with Egg 5.9 460 27 3

So the end result in your code looks like this:

```{r, eval = FALSE} 
read.csv("/Users/joeystanley/Desktop/menu.csv") 
``` 

```{r, echo = FALSE} 
menu<-read.csv("/Users/joeystanley/Desktop/github/joeystanley/data/menu.csv") 
menu$Item <- stringr::str_sub(menu$Item, 1, 24) 
head(menu, n = 15) 
``` 

Of course, this means that it’s easy to lie. You could show the code for an analysis of one set of
data, but then show the plot or results from a different set or maybe a subset with outliers
removed. Do not do this.

orcid.org/0000-0002-9185-0048 18

3.3 HIDE SPECIFIC OUTPUT

Sometimes, you want to display and run the code and you want to see some output, but you
want to hide things like error messages, warnings, or other messages. You can do that with
error = FALSE, warning = FALSE, and message = FALSE, respectively.

For example, if you want to load the tidyverse package, there are some messages that are
displayed when you do. These just show what other packages are being installed and what
conflicts there are.

library(tidyverse)

── Attaching packages ───────────────────────────────── tidyverse 1.2.1 ──

✔ ggplot2 2.2.1 ✔ purrr 0.2.4
✔ tibble 1.3.4 ✔ dplyr 0.7.4
✔ tidyr 0.7.2 ✔ stringr 1.2.0
✔ readr 1.1.1 ✔ forcats 0.2.0

── Conflicts ──────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

You almost never want to include this in your final document. Since these are neither error nor
warning messages and are just regular FYI messages (just because they’re red doesn’t mean
they’re wrong), we can hide them with message = FALSE. So this code…

```{r, message = FALSE} 
library(tidyverse) 
``` 

…gives you this result…

library(tidyverse)

So hiding the messages is a great way to make sure your final document looks as good as it can.

3.3.1 Your tu rn!

The chal lenge
1. When you make a histogram in ggplot2, unless you supply your own binwidth, it’ll choose

one for you and will let you know. Your task is to make a histogram and purposely leave
the binwidth argument off to trigger the message. But instead of supplying a binwidth to
suppress the message, just hide it using the code block options.

2. When you use read_csv to load data into R, it’ll give you a message saying how each
column was parsed like this:

 read_csv("http://joeystanley.com/data/cereal.csv")

orcid.org/0000-0002-9185-0048 19

 ## Parsed with column specification:
cols(
name = col_character(),
mfr = col_character(),
type = col_character(),
shelf = col_integer(),
weight = col_double(),
cups = col_double(),
rating = col_double(),
calories = col_integer(),
sugars = col_integer(),
protein = col_integer(),
fat = col_integer(),
sodium = col_integer(),
fiber = col_double()
)

 So you can copy and paste that into the code itself like this:

 read_csv("http://joeystanley.com/data/cereal.csv",
 col_types = cols(
 name = col_character(),
 mfr = col_character(),
 type = col_character(),
 shelf = col_integer(),
 weight = col_double(),
 cups = col_double(),
 rating = col_double(),
 calories = col_integer(),
 sugars = col_integer(),
 protein = col_integer(),
 fat = col_integer(),
 sodium = col_integer(),
 fiber = col_double()
))

But that also makes your code super long and probably isn’t necessary to include in a final
document. It’s a lose-lose. Your task is to find a way to read your data in using read_csv without
all those columns appearing in the final document.

The so lution

I’ll make a histogram of the fiber in all the cereals. Here’s the code with the warning message
included.

```{r} 
ggplot(cereal, aes(fiber)) +  
    geom_histogram() 
``` 

ggplot(cereal, aes(fiber)) +
 geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

orcid.org/0000-0002-9185-0048 20

And here’s the code with the message hidden:

```{r, message = FALSE} 
ggplot(cereal, aes(fiber)) +  
    geom_histogram() 
``` 

ggplot(cereal, aes(fiber)) +
 geom_histogram()

For reading data in, the simple solution would be to hide the message:

```{r, message = FALSE} 
read_csv("http://joeystanley.com/data/cereal.csv") 
``` 

An alternative method—especially if you actually do want to modify some of those column
types—is to use two blocks of code: one to display and the other to run.

```{r, eval = FALSE} 
read_csv("http://joeystanley.com/data/cereal.csv") 
``` 
```{r, echo = FALSE} 
read_csv("http://joeystanley.com/data/cereal.csv", 
         col_types = cols( 
             name = col_character(), 
             mfr = col_factor(levels = NULL), # modified 



orcid.org/0000-0002-9185-0048 21 

             type = col_factor(levels = NULL), # modified 
             shelf = col_integer(), 
             weight = col_double(), 
             cups = col_double(), 
             rating = col_double(), 
             calories = col_integer(), 
             sugars = col_integer(), 
             protein = col_integer(), 
             fat = col_integer(), 
             sodium = col_integer(), 
             fiber = col_double() 
         )) 
``` 

3.4 FIGURE OPTIONS

There are lots of other options for code blocks for more advanced users. But some of them have
to do with how figures are displayed. You can control many aspects of your figure using one or
more options.

3.4.1 Size and qual ity

By default, the figure’s height and width is 7 inches. This is fine for most purposes, but I like to
make mine shorter to save on paper if this is going to be a pdf or if I’m displaying a histogram.
(I actually did this already in the histograms displayed in this document!) The width is good, but
one time I made a barplot with a couple dozen bars and it made sense to just turn it sideways
and make the plot very tall. The default quality is 72 dpi (= dots per inch), but I like to set mine
to the publication-standard 300. It makes the rendering and display a little bit slower so I usually
wait until I’m close to finishing the document, but it makes the figures a lot crisper looking.

The way you can modify these settings is with the fig.height, fig.width, and dpi options.
Let’s take a basic histogram of the amount of calories per serving in the cereal data and change
these options.

plot_calories <- ggplot(cereal, aes(x = calories)) +
 geom_histogram(binwidth = 10, color = "grey50", fill = "grey90") +
 theme_classic()

Here are the default settings.

```{r} 
plot_calories 
``` 


orcid.org/0000-0002-9185-0048 22

Here, I’ve just made it shorter with fig.height = 2.

```{r, fig.height = 2} 
plot_calories 
``` 


I’ve made it shorter using fig.height = 1 and narrower using fig.height = 4.

```{r, fig.height = 1, fig.width = 4} 
plot_calories 
``` 


For these narrower ones, you might want to also add fig.align = "center" if you want to
stop it from being left-aligned.

```{r, fig.height = 1, fig.width = 4, fig.align = "center"} 
plot_calories 
``` 


orcid.org/0000-0002-9185-0048 23

With dpi = 300, the resolution is increased so the plot itself will get bigger. You may have to
scale the plot size down a bit more if you increase the resolution.

```{r, fig.height = 1, fig.width = 3, dpi = 300} 
plot_calories 
``` 


3.4.2 Your tu rn!

Make any plot you want of any part of the cereal or menu datasets. Feel free to spruce up the
plot a bit by adding color (as we learned in the ggplot2 workshops) or by creating new columns
like calories per cup (like we learned in the tidyverse workshop). Display the plot in your
RMarkdown file and make it an appropriate size and dimension.

4 OUTPUT

Everything we’ve done so far has used the default output settings. But we can modify how your
document is rendered to make the HTML, Word, or PDF file look better.

4.1 DIFFERENT OUTPUT FILES

We take care of this all the way at the top of your RMarkdown file in the header. This is the
portion between the --- lines, where your title, name, and date appear. We can add lots more
to that to make everything look good.

Most of these options come after the output: line, usually indented. In our document we have
html_document next, but if you want to also create a Word file, you can add it to the heading
like this:

output:
 html_document: default
 word_document: default

orcid.org/0000-0002-9185-0048 24

When you knit your document up, you’ll end up with two new files in the same folder as your
RMarkdown file. Since html_document is first, an HTML file will pop up (and if you put the
word_document first, a Word file will open automatically). An HTML file is one that is what you
might see on a webpage, and in fact you can open the file in a web browser and it’ll look like a
regular website (except it’s just a file saved on your computer).

You can also create a PDF using pdf_document: default and it will create a PDF version of
your file. This uses something called LaTeX, so if you’re familiar with that there are lots of
additional options that make the transition between R and LaTeX smoother. However, it might
not work if you don’t have it installed on your computer. That’s okay: you can just knit it to a
Word file and then save it as a PDF file (which is what I do).

4.1.1 Your tu rn!

Try knitting your file into a Word file and look at how it renders. What kinds of changes do you
see?

4.2 TABLE OF CONTENTS

When you knit your files to an HTML or Word file, there are lots of defaults. You can change
some of these defaults to make your document turn out better. To do this, you’ll have to modify
your header to make room for these new options by removing the default from the line, and
adding new lines like this:

output:
 html_document:
 (Options go here.)
 word_document:
 (Other options go here.)

One of the options I like to add is a table of contents. This is something that shows up at the top
of the document, which we can add this with toc: true.

output:
 html_document:
 toc: true
 word_document:
 toc: true

When you knit your files, you should now see a table of contents at the top. In Word, this is just
like one that you might add using the controls in Word. In the HTML file, you’ll see a list of links
at the top.

orcid.org/0000-0002-9185-0048 25

In my opinion, the HTML one is not that pretty, so I like to
add toc_float: true, which will move it to the side

output:
 html_document:
 toc: true
 toc_float: true

This is also super handy because it sort of floats along there
at the top of the window even if you scroll down. If I were
you, always put a floating table of contents if you have a
table contents at all.

Depending on how many headings and subheadings you
have, you might want to control how they look. In HTML
files, you can make it so that the table of contents only
shows Header 1 and Header 2 and anything deeper than
that is hidden. You can do that with the option toc_depth:
2. This is what I typically do.

output:
 html_document:
 toc: true
 toc_float: true
 toc_depth: 2

Of course, if you don’t use headers that often, then this
won’t matter much.

One last thing for the table of contents is to add a bit of flare and make other sections collapse
down when you’re not in them. Again, this is something that I like to do. This is actually an
option within toc_float, so take out the true, add a colon, and on the next line, put
collapsed: true:

orcid.org/0000-0002-9185-0048 26

output:
 html_document:
 toc: true
 toc_float:
 collapsed: true
 toc_depth: 2

You can also add smooth_scoll = false if you don’t like the smooth transitions between
sections, but I think they’re kinda nice.

4.2.1 Your tu rn!

Add a table of contents to your RMarkdown file.

4.3 FIGURES

If you include lots of figures, you might find yourself settings the same options over and over for
each one. So if you’re creating a Word file and the plots are just too big, you might want to scale
them back a bit to save space.

Turns out you can override the default figure options so that you don’t have to do a manual
override in every code block. You can do this by using the fig_width and fig_height options
in your header, either for the HTML output or the Word file.

output:
 html_document:
 toc: true
 toc_float:
 collapsed: true
 toc_depth: 2
 fig_width: 4
 fig_height: 4
 word_document:
 toc: true
 fig_width: 4
 fig_height: 4

4.4 THEMES

If you don’t like the way the HTML file looks, you can actually change the theme of the file using
the theme: option.

output:
 html_document:
 theme: "journal"

The choices you have are these:

orcid.org/0000-0002-9185-0048 27

orcid.org/0000-0002-9185-0048 28

You can also just change the color of the syntax highlighting with highlight.

output:
 html_document:
 theme: "journal"
 highlight: "pygments"

Your options are these:

orcid.org/0000-0002-9185-0048 29

orcid.org/0000-0002-9185-0048 30

If you happen to know CSS, you can also override the themes entirely and provide your own. I
do this actually so that my RMarkdown files match my website. All you need to do is provide the
path to the CSS file:

output:
 html_document:
 css: r-series.css

Of course, if you have no idea what CSS is, that’s totally fine. You can stick with one of the
default themes and you’ll be perfectly alright.

4.5 OTHER OPTIONS

There are lots and lots of other options that you can add to your file. Some more advanced than
others. Some that might be useful to you include these:

• If you need to show tables, df_print: paged makes them render a lot prettier.

• Sometimes, you don’t want to show the code by default, but you want to still give users the
option to see it. The code_folding: hide in an HTML document makes it so that all the
code is hidden by default, but there’s a little button where each one would be that lets you
see the code. It also adds one to the top to show or hide all code blocks.

• RMarkdown can automatically number the sections for you, which is pretty cool. This is
nice because you don’t ever have to worry about them, and you can rearrange sections all
you want and it’ll take care of making sure all the numbers are in the right place. You can
add this with number_sections: true.

I encourage you to look through the RMarkdown documentation online4 to find more options
that you can use in your code. It’s quite thorough and gives very clear examples.

5 FINAL REMARKS

RMarkdown is great. I use it all the time now because they’re just a great way to incorporate
prose into your R code. Today’s workshop covered how to add text formatting to the narrative
portion, how to modify the code blocks, and how to set global option for the output. It doesn’t
take too much time to turn your code into a nice document and you can learn about the nitty-
gritty options as you go along—I learned a few things just by preparing this document! This takes
some practice, but you’ll get the hang of it the more you use it.

4 https://rmarkdown.rstudio.com/html_document_format.html

