ORDER OF OPERATIONS IN SOCIOPHONETIC DATA ANALYSIS

Joseph A. Stanley

Brigham Young University joey_stanley@byu.edu @joey_stan

joeystanley.com

New Ways of Analyzing Variation 49 (Online) October 2021

The Sociophonetic Pipeline

The Sociophonetic Pipeline

Comparing Data Analysis Methods

Overlap

- Pillai is probably best (Nycz & Hall-Lew 2013)
- Well no, Bhttacharyya's affinity is better (Johnson 2015)
- Well, Pillai may be better at least for small, idealized data (Kelley & Tucker 2020)

Normalization

- We tested 12 ways and Lobanov is best (Adank et al. 2004)
- Adank et al miscalculated and Lobanov is actually not great (Barreda 2021a LVC)

Statistical Analysis

- Ditch Goldvarb and use mixed-effects models (Johnson 2009, 2014)
- Goldvarb still has its uses (Tagliamonte & D'Arcy 2017)

Formant estimation

- Different Praat settings can produce different results (Kendall & Vaughn 2020)
- Find the best Praat settings (Barreda 2021b *Ling Van.*)

Order of Operations

Lots of debate on which individual method is best. (Good!)

- We all know that we need to run the same steps (Good!)
- We all know we need to report details of the pipeline (Good!)

To my knowledge, no discussion of the order of operations

- Some configurations make no difference
- Other configurations make a sizeable difference

Hypothesis:

- We can get substantially different interpretations of the data depending on the order of operations.
- Order of operations matters!

Three Experiments

Low-Back-Merger Shift (Becker 2019)

- Includes the low back merger
- Front lax vowels lower and centralize

Merger and shifts are difficult to quantify

How do order of operations affect three common metrics?

- Experiment 1: Pillai scores
- Experiment 2: ANAE "benchmarks"
- Experiment 3: LBMS Index

EXPERIMENT 1: PILLAI SCORES

Measuring Vowel Overlap

Mergers have always been difficult to measure

- Simple solution: Does someone realize two historically different vowels in the same space?
- However, F1-F2 isn't everything (voice quality, length, trajectories, speaker intuition)

Most common solution: Pillai scores (Hay et al. 2006)

• Output of MANOVA test: 0 = complete overlap, 1 = complete separation

Pillai Scores

Two vowel pairs

- the low back merger (/a/ vs. /ɔ/)
- the "prenasal split" (raising of /æN/ compared to pre-obstruent /æ/)

Steps in the pipeline

- remove stopwords
- remove outliers
- isolating midpoints from trajectories
- remove unstressed tokens
- For low-back merger: remove presonorant tokens.
- For prenasal split: defining vowel classes (i.e. treat $/\approx N/$ differently than $/\approx/$)

Five steps = 120 permutations

All Pillai scores (120 results for each speaker)

Christina (female 1987 Colorado)

EXPERIMENT 2: ANAE BENCHMARKS

How to measure shifting vowels?

It's difficult to say objectively whether a vowel is shifted

- Relationship to other vowels (which may also be shifting)
- Benchmarks don't work because of normalization and dialect differences

Most typical method: compare to supposed "benchmarks"

- Atlas of North American English (Labov, Ash, & Boberg 2006)
- Using these benchmarks implies ANAE normalization

Compare to ANAE Benchmarks

More processing involved

- remove stopwords
- remove outliers
- remove diphthongs
- remove presonorants
- isolating midpoints
- a specific normalization procedure
- remove unstressed vowels

Seven steps = 5040 combinations

Is Corey's /ɛ/ vowel shifted?

Is Corey's /æ/ vowel shifted?

ANAE Benchmark Results

If shifting is measure by those benchmarks, the results varied widely

Individuals varied

- For 20 people their overall status of shifted vs non-shifted was the same in all 5040 combinations
- But for 33 people, whether they were shifted or not depended on the permutation.

Overall results varied

- 31 people were considered shifted in some permutations
- 43 people were in others

So how many people in my sample are shifted??

EXPERIMENT 3: LBMS-INDEX

Another measure for shifting vowels

The "LBMS Index" (Becker 2019)

- Distance between /I/ and /i/
- Distance between $/\epsilon$ / and /i/
- Distance between /æ/ and /i/
- Average these three

Becker (2019) provides guidelines on how to do it

- Use Lobanov normalization
- Remove presonorants
- The other steps in the pipeline are assumed
- No order is specified.

Same steps as Experiment 2: 5040 combos

LBMS Results

Average the results by permutation

Wide range of results

- Least shifted: 2.24
- Most shifted: 2.58

A wide enough range to be considered sociolinguistically significant!

LBMS Index in the Rockies verses known reference values Higher numbers (lower on the plot) indicate more shifting

DISCUSSION

Overview

Pillai scores

- Up to 16 outcomes
- Mostly small differences in low back, though some in /æN/-raising were large enough to matter

"Benchmarks" and LBMS Index

- Hundreds of outcomes for each person
- Differences were wide enough to reclassify people as "shifted" or not

In all three measures, the order of operations mattered

- The differences were the same magnitude as reported sociolinguistic differences
- Where normalization happens is the biggest factor

Who cares?

A naive analysis of the Rockies would be a random draw from the possible range of values.

Because order is not reported, all previous studies' results are random draws from their range of possible values!

Comparisons across studies are potentially meaningless.

LBMS Index in the Rockies verses known reference values Higher numbers (lower on the plot) indicate more shifting

Recommendations

Define a "proper" order of operations

- My recommendation:
 - 1. Filter noise first (stopwords before outliers)
 - 2. Normalize
 - 3. Subset the data if necessary (midpoints only, presonorants, monophthongs)
- Report this as part of methods
- Take numbers from studies that use different/unknown order with a grain of salt

Perhaps find different metrics

• Perhaps this instability is a sign that the metric is bad

Be smart about how we process our data

• More papers talking about methods

References

- Adank, Patti, Roel Smits, and Roeland Van Hout. "2004. A Comparison of Vowel Normalization Procedures for Language Variation Research." *The Journal of the Acoustical Society of America* 116(5). 2004: 3099–3107.
- Barreda, Santiago. 2021a. "Perceptual Validation of Vowel Normalization Methods for Variationist Research." Language Variation and Change, 1–27. https://doi.org/10.1017/S0954394521000016.
- Barreda, Santiago. 2021b. "Fast Track: Fast, (Nearly) Automatic Formant-Tracking Using Praat." *Linguistics Vanguard* 7(1).
- Becker, Kara, ed. 2019. The Low-Back-Merger Shift: Uniting the Canadian Vowel Shift, the California Vowel Shift, and Short Front Vowel Shifts across North America. Publication of the American Dialect Society 104. Durham, NC: Duke University Press.
- Hay, Jennifer, Paul Warren, and Katie Drager. 2006. "Factors Influencing Speech Perception in the Context of a Merger-in-Progress." *Journal of Phonetics*, Modelling Sociophonetic Variation 34(4): 458–84. <u>https://doi.org/10.1016/j.wocn.2005.10.001</u>.
- Johnson, Daniel Ezra. 2009. "Getting off the GoldVarb Standard: Introducing Rbrul for Mixed-Effects Variable Rule Analysis." Language and Linguistics Compass 3(1): 359–83.
- Johnson, Daniel Ezra. 2014. "Progression in Regression: Why Natural Language Data Calls for Mixed-Effects Models." Self-published manuscript.

- Johnson, Daniel Ezra. 2015. "Quantifying Vowel Overlap with Bhattacharyya's Affinity." Presented at the New Ways of Analyzing Variation (NWAV44), Toronto.
- Kelley, Matthew C., and Benjamin V. Tucker. 2020. "A Comparison of Four Vowel Overlap Measures." The Journal of the Acoustical Society of America 147(1): 137–45. <u>https://doi.org/10.1121/10.0000494</u>.
- Kendall, Tyler, and Charlotte Vaughn. 2015. "Measurement Variability in Vowel Formant Estimation: A Simulation Experiment." In *ICPhS*.
- Labov, William, Sharon Ash, and Charles Boberg. 2006. The Atlas of North American English: Phonetics, Phonology and Sound Change. Berlin: Walter de Gruyter.
- McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger. 2017. "Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi." Proceedings of the 18th Conference of the International Speech Communication Association.
- Nycz, Jennifer, and Lauren Hall-Lew. 2013. "Best Practices in Measuring Vowel Merger." Proceedings of Meetings on Acoustics 20(1): 060008. <u>https://doi.org/10.1121/1.4894063</u>.
- Tagliamonte, Sali A., and Alexandra D'Arcy. 2017. "Individuals, Communities and the Sociolinguistic Canon." Presented at the New Ways of Analyzing Variation (NWAV) 46, Madison, WI.

ORDER OF OPERATIONS IN SOCIOPHONETIC DATA ANALYSIS

Joseph A. Stanley

Brigham Young University joey_stanley@byu.edu @joey_stan

joeystanley.com

New Ways of Analyzing Variation 49 (Online) October 2021