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Abstract 

Since their introduction to sociolinguistics by Hay et al. (2006), Pillai scores have become a standard 

metric for quantifying vowel overlap. However, there is no established threshold value for 

determining whether two vowels are merged, leading to conflicting ad hoc measures. Furthermore, 

as a parametric measure, Pillai scores are sensitive to sample size. In this paper, we use generated 

data from a simulated pair of underlyingly merged vowels to demonstrate (1) larger sample sizes 

yield reliably more accurate Pillai scores, (2) unequal group sizes across the two vowel classes is 

irrelevant in the calculation of Pillai scores, and (3) it takes many more data than many 

sociolinguistic studies typically analyze to return a reliably low Pillai score for underlyingly merged 

data. We provide some recommendations for maximizing reliability in the use of Pillai scores, and 

provide a formula to assist researchers in determining a reasonable threshold to use as an indicator 

of merged status given their sample size.  We demonstrate these recommendations in action with a 

case study. 
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I. INTRODUCTION 1 

Quantifying vowel overlap is an important component of many linguistic studies, ranging from 2 

sociolinguistics to laboratory phonology. While various methods of quantifying vowel overlap have 3 

been proposed (see, e.g., Nycz & Hall-Lew 2013), Pillai scores have emerged in recent years as the 4 

most commonly used method, particularly within sociolinguistics (Hay, Warren & Drager 2006; Nycz 5 

& Hall-Lew 2013), because of its ability to measure a distinction in multivariate space while also 6 

accounting for fixed effects like phonological context. However, there is no standard value of Pillai 7 

score that is broadly accepted to be a threshold for “merged” or “distinct”; indeed, individual studies 8 

make this determination primarily by comparison between individuals in a single data set, to show that 9 

some speakers are “more merged” while others are “less merged”. In this paper, we provide a critical 10 

look into how Pillai scores are calculated and reported. 11 

We focus on demonstrating how sample size plays a major role in the resulting Pillai score. 12 

We also show that the common approach of reporting Pillai scores alone is incomplete without also 13 

reporting sample sizes and p-values. Using simulation data drawn from an underlyingly merged data 14 

set, we show how larger samples produce lower Pillai scores (in other words, a more “merged” score). 15 

We further demonstrate that within Pillai, it is the total n across both samples that matters, and provide 16 

a formula that researchers can use to determine a threshold for “merged” given their own sample size. 17 

We highlight some important takeaways about using Pillai scores to measure vowel overlap and the 18 

potential risks for across- and within-study comparisons of speakers. We end with a case study which 19 

demonstrates how researchers can implement the recommendations in this paper when analyzing real 20 

data from sociolinguistic interviews.   21 

 22 
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A. Pillai as a measure of vowel overlap 23 

1. Pillai score overview 24 

A multivariate analysis of variance (MANOVA) is an extension of the (univariate) analysis of 25 

variance (ANOVA). The difference is that while an ANOVA evaluates whether the difference 26 

between two or more groups in a single numeric variable can be predicted by some number of 27 

categorical independent variables (such as the F2 of /u/ across older and younger participants), a 28 

MANOVA can evaluate two or more dependent numeric variables simultaneously (such as F1, F2, 29 

F3, and duration of /u/ by older and younger participants). So, a researcher analyzing American 30 

English vowels (which typically are differentiated primarily on vowel quality in F1-F2 space) could 31 

use a MANOVA to see whether a speaker pronounces two historically distinct vowel classes 32 

differently, while including the effects of duration and place of articulation as independent variables. 33 

In this case, F1 and F2 would be the dependent variables, and vowel class, duration, and place of 34 

articulation would be the independent variables. 35 

Simplified somewhat, the null hypothesis of a MANOVA is that category membership (for 36 

instance, two historically distinct vowel classes) offers no explanatory power for any of the 37 

dependent variables. In the case of a MANOVA that is fit to vowel data, the null hypothesis is that 38 

the two vowels are merged. In other words, there would be no way to guess which historic vowel 39 

class a particular token came from by its acoustic measurements alone. Typically, the researcher’s 40 

aim is to find evidence to reject that hypothesis. We note that high p-values associated with 41 

MANOVAs only indicate a lack of evidence to reject the null hypothesis that the two vowel classes 42 

are the same, rather than evidence for the null hypothesis. MANOVA cannot prove that two vowels 43 

are merged, only that there is little evidence to suggest that they’re distinct.  44 

 There are four main test statistics associated with a MANOVA to compare what the data 45 

shows to the null hypothesis: Wilk’s lambda, the Lawley-Hotelling trace, Roy’s largest root, and the 46 
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Pillai-Bartlett trace. Of these four, the lattermost is the most robust for non-normally distributed data 47 

and other violations of the assumptions of a MANOVA for tests that compare more than two groups 48 

(Olson 1976). In sociophonetic data, where it is more common to compare only two groups, the Pillai-49 

Bartlett trace has less advantage over the other three in statistical validity, but does benefit from being 50 

both easy to run in commonly used statistical environments and relatively easy to interpret. For 51 

introductory overviews of these four test statistics, including their mathematical definitions and 52 

conceptual explanations, see Bray & Maxwell (1985: 27–29), John & Wichern (2012: 336), Rencher & 53 

Christensen (2012: 169–188), and Upton & Cook (2014, “multivariate analysis of variance 54 

(MANOVA)”). 55 

The Pillai-Bartlett trace, often called the Pillai score or occasionally just Pillai in linguistics 56 

studies (a convention that we adopt here), ultimately comes from Pillai (1955) and Bartlett (1939). In 57 

the simplest model, which predicts two dependent variables (e.g., F1 and F2) using a single two-level 58 

categorical variable (e.g., /ɑ/ and /ɔ/), it returns a value that ranges between 0 and 1, with smaller 59 

values occurring when there is greater overlap between the two groups in multivariate space, and larger 60 

numbers for less overlap. In other words, small Pillai scores suggest a vowel merger. In reality, 61 

determining whether a merger is present is not quite as simple as merely observing overlap. Two 62 

vowels may occupy the same F1-F2 space but the distinction between phonemes may be maintained 63 

though some other cue like voice quality (Di Paolo & Faber 1990), duration (Labov & Baranowski 64 

2006), or vowel trajectory (Stanley 2020). We adopt a simplified approach here since our focus is to 65 

explore the effects of sample size, but we acknowledge that there is more to merger than overlapping 66 

midpoints in the F1-F2 space. 67 

2. Meta-analyses of Pillai scores vs. other metrics 68 

Prior to the introduction of Pillai scores to sociophonetics, perhaps the most common way to 69 

assess merger was through auditory coding. In its most basic form, the phonetically-trained researcher 70 



   
 

 5 

would listen and evaluate whether there was a difference between the two sounds. But, as shown 71 

below, Pillai scores are most commonly used on low vowels, which are notoriously difficult for 72 

fieldworkers to accurately transcribe (Johnson 2010: 28–29). In fact, Moulton (1968: 464) rather 73 

strongly states that early fieldworkers for the Linguistic Atlas Projects were “hopelessly and humanly 74 

incompetent at transcribing phonetically the low and low back vowels that they heard from their 75 

informants.” Fortunately, formulaically quantifying overlap provides a less subjective measure for 76 

vowel merger. 77 

While Pillai scores are currently the most common metric for quantifying mergers, especially 78 

within sociolinguistic work, there are also other approaches available. In addition to the auditory 79 

coding mentioned above, much early work used the Euclidean Distance between the point 80 

representing the mean F1 and mean F2 of one vowel class and the point representing the mean F1 81 

and mean F2 of a second vowel class as the primary metric for vowel merger (Hay, Warren & Drager 82 

2006; Nycz & Hall-Lew 2013; Han & Kang 2013; Hall-Lew 2013). This early approach is not 83 

particularly satisfying, as it fails to take into account the distributional properties of the data, including 84 

the degree of overlap and the distribution of tokens within a vowel class (Kelley & Tucker 2020: 137). 85 

The Spectral Overlap Assessment Metric (SOAM; Wassink 2006), which calculates overlap between 86 

ellipses or ellipsoids fitted to the vowel distribution (see Wassink 2006 for details on the fitting) and 87 

calculates the area or volume of their overlap, is one method adopted and recommended in other 88 

sociophonetic work (Di Paolo, Yaeger-Dror & Wassink 2011: 103; Kendall & Fridland 2021: 56). We 89 

refer interested readers to Nycz and Hall-Lew (2013) and Kelley and Tucker (2020) for in-depth 90 

assessments of these measures and several others, compared with Pillai scores. Kelley and Tucker 91 

assess four different metrics of vowel overlap, using a Monte Carlo simulation to test accuracy, and 92 

find that Pillai scores produced the most accurate and precise values when compared to ground truth 93 
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values in their simulated data. They also recommend Pillai scores when sample sizes are “small,” which 94 

they define as 30 observations per group.  95 

For sociophonetic data, and especially for naturalistic sociophonetic data, obtaining more than 96 

30 observations per group is not always feasible, making Pillai an especially valuable tool for 97 

sociophonetics. As perhaps foregrounded by the title of this current paper, sample size plays an 98 

important role in the resulting Pillai score, which we highlight in detail in Sections 2–3. We note, 99 

however, that this is generally true of all measures of vowel overlap compared in the overview papers 100 

mentioned above (Nycz and Hall Lew 2013; Kelley and Tucker 2020). Indeed, any measure that uses 101 

means, standard deviations, and/or variance as inputs will be impacted by sample size. Likewise, larger 102 

sample sizes impact statistical significance, with larger sample sizes leading to smaller p-values. Our 103 

aim here is not to simply recommend that researchers obtain larger sample sizes, which in many cases 104 

is either not possible or may be at odds with other important data collection considerations, but rather 105 

to elucidate how sample size impacts resulting scores, so that researchers can be best informed when 106 

using Pillai as a measure of vowel overlap. 107 

Perhaps an even bigger concern than total sample size with naturalistic data is the near 108 

impossibility of obtaining balanced token counts across two categories from naturalistic data. In 109 

wordlist data, researchers can carefully craft their wordlist to obtain balanced data: this typically means 110 

obtaining the same number of observations in each vowel class and ensuring that the wordlist is 111 

balanced for additional factors, such as phonological context. In naturalistic (i.e., conversational) 112 

speech, there is no way to ensure that a speaker produces balanced token counts across vowel category 113 

and across phonological contexts. As a result, researchers investigating something like vowel overlap 114 

need to understand precisely how Pillai scores may be affected by unbalanced data. 115 

Finally, while Pillai has emerged as the best option so far for most sociophonetic data, there 116 

is one additional concern to address, which is that MANOVAs assume the data within each group 117 
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follows a multivariate normal distribution (Bray & Maxwell 1985). Formant measurements for a given 118 

vowel from a given speaker in naturalistic vowel data, being nonnormally distributed, do not fit this 119 

assumption (though see Whalen & Chen 2019 for some evidence that vowel formant data, even with 120 

coarticulation, can be normally distributed). Recent work has suggested Bhattacharyya’s Affinityi as a 121 

better measure for non-normally distributed data (Fieberg & Kochanny 2005; Johnson 2015), and has 122 

been taken up by some subsequent work (Strelluf 2018; Warren 2018; Jensen & Braber 2021). While 123 

the benefits of Bhattacharyya’s Affinity being a nonparametric measure make it particularly appealing 124 

for the kind of distributions of data found in naturalistic speech, there is not yet a mechanism for 125 

easily incorporating fixed effects like phonological context or speaker age.ii Furthermore, 126 

Bhattacharyya’s Affinity also works best on a relatively large data set of over 30 observations per 127 

category (Seaman et al. 1999). While future work may make nonparametric methods like 128 

Bhattacharyya’s Affinity more easily integratable with the kind of statistical models linguists typically 129 

use, for now we focus on Pillai score and the considerations necessary to make its use maximally 130 

standardized. 131 

 132 

3. How Pillai scores are used to measure overlap in sociophonetics 133 

Pillai scores have been used to analyze a variety of phenomena in several languages. Perhaps 134 

the most common application of Pillai scores is to measure overlap between /ɑ/ and /ɔ/ in North 135 

American English (Hall-Lew 2013; Kendall & Fridland 2017; Havenhill 2015; Stanford et al. 2019 136 

inter alia). In fact, using Pillai scores to measure this merger was explicitly recommended in Becker 137 

(2019), a volume of different studies all analyzing the spread of the /ɑ-ɔ/ merger in North American 138 

English. Many conditioned mergers in English have been quantified with Pillai scores as well (Schmidt, 139 

Diskin-Holdaway & Loakes 2021; Austin 2020; Freeman 2021; Newbert 2021 inter alia). To a lesser 140 

extent, Pillai scores have been used to analyze vowels that are marginally contrastive (Galician: 141 
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Amengual & Chamorro 2015; Italian: Nadeu & Renwick 2016; Bangla: Islam & Ahmed 2020; 142 

Hawai’ian: Kettig 2021; Swiss German: Joo, Schwarz & Page 2018; Austrian German: Sloos 2013). 143 

Some more innovative uses of Pillai scores include using them to analyze tones in varieties of 144 

Cantonese (Fung & Lee 2019; Tse 2018) and in Spanish fricative mergers (Regan 2020). 145 

Pillai scores have also been used to quantify splits, chiefly among phonological low vowels. 146 

Fisher et al. (2015) assess the degree to which the Philadelphia short-a split is found in their sample 147 

of Philadelphians. Relatedly, Hall-Lew et al. (2017) look at the BATH-TRAP split in Scottish Parliament 148 

data. Brozovsky (2020) uses Pillai scores to measure the raising (and separation) of prenasal /æ/, using 149 

Pillai scores to measure the overlap between prenasal /æ/ and preobstruent /æ/ in Taiwanese Texans.  150 

In a study looking at the possible effect of salience on a given lexical item compared to the rest of its 151 

canonical vowel class, Bray (2021) analyzes the lowered realization of the vowel in hockey compared to 152 

other relatively more raised /ɑ/ tokens in professional American hockey players. 153 

As highlighted by the selection of citations above, since being introduced to the field, Pillai 154 

scores have become widespread in sociophonetic studies. With the support of meta-analyses that 155 

compare other competing measures, Pillai has become a useful go-to for measuring both the overlap 156 

and the distinction of speakers’ pronunciation of two phonological categories, especially in 157 

sociolinguistic studies that need to compare across individual speakers. While Pillai scores are clearly 158 

a valuable tool in measuring vowel overlap, there remain some outstanding issues with using it. In the 159 

following sections, we highlight some of these issues. 160 

 161 

B. Issues with Pillai scores 162 

4. What is considered merged? 163 

As useful as Pillai scores are for quantifying the degree of overlap, they do not necessarily 164 

answer researchers’ underlying question of whether two vowels are merged. Pillai scores range from 165 
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0 to 1, but there is no agreed-upon cutoff value or threshold for determining whether the two groups 166 

are merged or not. As a result, many studies rely on an ad-hoc threshold to interpret the merged status 167 

of their speakers. Some work has suggested specific thresholds for mergers. For instance, Jibson 168 

(2021) suggested a Pillai threshold of 0.3 as an indicator of “merged” status, after a shuffling procedure 169 

identified 0.3 as the 95th percentile of “merged” between 20 tokens of two vowel classes from his 170 

speakers. Wassink (2006) likewise suggests some provisional thresholds for SOAM, where 0-20% 171 

overlap represents “distinct”, 20-40% represents “partially merged”, and >40% represents “merged”. 172 

Relying on provisional or ad-hoc thresholds, however, is risky because sample size is likely not 173 

comparable across studies or even between speakers.  174 

One solution for determining whether a given Pillai score should be interpreted as an 175 

indication of “merger” is to examine the p-values that are associated with the MANOVA model from 176 

which the Pillai scores are generated. The model assumes that the vowel variable contributes no 177 

information to differentiating between two groups. In other words, it assumes the two vowels are 178 

underlyingly merged. A small p-value associated with the vowel variable would provide evidence 179 

against that null hypothesis, allowing the researcher to conclude that the difference between the two 180 

groups is likely true (i.e., that the speaker is not merged). We note that Pillai scores and p-values are 181 

inversely correlated: lower Pillai scores typically accompany higher p-values. In fact, since Pillai scores 182 

are just test statistics, they and p-values are functions of each other. Nevertheless, p-values are not 183 

typically reported in sociophonetic studies that use Pillai (some exceptions include Wong & Hall-Lew 184 

2014; Nadeu & Renwick 2016; Amengual & Chamorro 2015; Berry 2018; Sloos 2013).  185 

There are a few points of caution to make about using and interpreting p-values, as we discuss 186 

throughout this paper. One of these concerns the potential distinction between a statistically 187 

significant difference (as defined by the model) and a ground truth difference for speakers. For a 188 

speech community that has a ground truth merger in two vowel categories, there will be no difference 189 
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in their perception of these two vowel categories. However, as sample size increases, so does the 190 

likelihood of a model returning a p-value below a given significance threshold (typically 0.05); it is 191 

possible that even for pairs of sounds that are truly merged, a sufficiently large dataset can interpret 192 

random variance in the data as a meaningful difference, as shown in the experiments in Section 3. An 193 

additional caution to make regarding interpreting p-values alone as an indicator of merger is that a 194 

statistically significant difference in formant values may not map onto a perceptible difference for the 195 

human auditory system (see, e.g., Kewley-Port and Watson, 1994). P-values alone can likewise be 196 

misleading in the opposite direction: previous work has shown that speakers and listeners can produce 197 

and perceive reliable but small differences, including sub-phonemic differences, in what may otherwise 198 

appear to be merged sounds (for instance, with cases of incomplete neutralization; Warner et al. 2004; 199 

Pfiffner 2021). Vowel distinctions that are maintained by small effect sizes, or by sub-phonemic 200 

distinctions not captured by the measurements in the model, may appear artificially to be merged 201 

according to a p-value because it takes more data for smaller differences to be detected by the statistical 202 

model. For these reasons, additional information such as Pillai scores can aid in the interpretation of 203 

p-values, and vice versa.  204 

5. Sample size 205 

As suggested by the parametric nature of Pillai, and the discussion of ad-hoc thresholds above, 206 

a major component of deciding which threshold should be used to determine merger status is the 207 

number of tokens being analyzed. Previous work on Pillai scores and sample size have expressed 208 

concern over too-small sample sizes (Gorman & Johnson 2013), and over unbalanced sample sizes 209 

across the two vowel classes being analyzed (Nycz & Hall-Lew 2013; Johnson 2015).  210 

Despite sample size having a major impact on Pillai scores, most studies in sociophonetics 211 

that use Pillai as a measure of vowel overlap do not also clearly report sample size (exceptions include 212 

Wong & Hall-Lew 2014; Holland & Brandenburg 2017; Berry 2018; Berry & Ernestus 2018). This in 213 
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turn makes it difficult both to assess the findings in an individual paper and to compare speakers 214 

within and across studies. In the simulation experiments below, we show just how important sample 215 

size is to the resulting Pillai score, and provide a formula to calculate a recommended Pillai score 216 

threshold for merger status, given a particular sample size. 217 

II. METHODS 218 

In this section, we present the results of Monte Carlo simulation experiments designed to test 219 

the effect of different sample sizes on resulting Pillai score. In these simulations, we create two vowel 220 

classes that are perfectly merged underlyingly, and alter (1) the sample sizes between the two vowel 221 

classes to test the effect of unbalanced samples across vowel classes, (2) the overall sample size, 222 

considering both vowel classes together, to test the effect of unbalanced total sample size across 223 

speakers, and (3) the correlation between the simulated F1 and F2 formant frequencies, to test whether 224 

correlations (like those typically found in naturalistic vowel data) influence the results. 225 

C. Data generation 226 

We generated data using a Monte Carlo simulation (Metropolis & Ulam 1949). This is a 227 

procedure where random draws are taken from an underlying probability distribution or existing 228 

dataset and analyzed. This process is repeated independently many times and the information about 229 

each iteration is aggregated. To begin the simulation, a bivariate normal distribution iii was generated 230 

in R to simulate a single theoretical underlying vowel in the F1-F2 dimension for a single theoretical 231 

speaker. For the sake of simplicity, the mean for F1 and F2 were both set to zero and the standard 232 

deviation was 1. In Experiments 1 and 2, the correlation coefficient between the formants was zero, 233 

producing a circular (rather than elliptical) distribution. In naturalistic speech, however, vowel data 234 

typically has some degree of correlation between F1 and F2, resulting in elliptical distributions, so in 235 

Experiment 3, we manipulated the correlation coefficient between F1 and F2, to test whether the 236 
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results from Experiments 1 and 2 hold for data with different degrees of correlation. To simulate 237 

vowel data, random draws were taken from that single bivariate normal distribution, and assigned to 238 

one of two “vowel class” labels. We note that it is somewhat nonsensical to refer to these generated 239 

numbers as “vowels”, especially since Pillai scores can be calculated on non-vowel data. However, 240 

since the majority of Pillai scores in sociophonetic analyses are based on vowels, for clarity, we will 241 

refer to this simulated data points as “vowels” and their arbitrary groups as “vowel classes.” These 242 

random draws represent a linguist sampling data from our theoretical speaker. For the sake of 243 

illustration, we will say 30 such observations were generated. These 30 observations were treated as 244 

tokens from a single underlying vowel class.iv Another 30 random draws were then taken from the 245 

same bivariate normal distribution. These 30 observations were treated as tokens from a different 246 

underlying vowel class. Generating two groups from the same underlying distribution therefore creates 247 

a simulated pair of merged vowels. In theory, the two simulated vowel classes should not be statistically 248 

different from each other in any way because they were drawn from the same underlying distribution.  249 

 250 

D. Three experiments 251 

For this study, we ran three experiments. In Experiment 1, the two simulated vowel classes 252 

for each “speaker” were of equal size. We began with a sample size of 5 observations per vowel class. 253 

We then moved on to 6 observations per vowel class, and so on, until we reached 100 observations 254 

per vowel class. For each of these 96 sample sizes, we repeated the simulation 1000 times, each 255 

representing a different instance of a linguist sampling data from that one underlyingly merged 256 

speaker. This produced 96,000 pairs of simulated vowel data, where each pair consisted of equal-sized 257 

vowel classes, enabling us to test the effect of overall sample size on resulting Pillai score. 258 

In Experiment 2, we varied the sample size between the two vowel classes for each “speaker”. 259 

We began with 5 tokens from one vowel and 6 from another. We then took 5 tokens of one and 7 260 
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from the other. We increased the size of the second group by steps of 1 until it contained 100 tokens. 261 

We then repeated this process with the first group having 6 tokens, and increased the second group 262 

from 5 to 100 in steps of 1. We iterated over these steps, increasing the sample size of the first group 263 

up to 100, thereby generating pairs of vowel data where every combination of sample sizes from 5 to 264 

100 was represented. We repeated this simulation 100 times per combination. This produced 921,600 265 

pairs of simulated vowel data, where each pair consisted of different-sized vowel classes, enabling us 266 

to test the effect of unbalanced vowel class size on resulting Pillai score.  267 

In Experiment 3, we then varied the correlation between the simulated formant data, 268 

modifying the shape of the underlying bivariate normal distribution from circular to elliptical using 269 

the mvrnorm() function in the MASS package (Venables, Ripley & Venables 2002). As with 270 

Experiments 1 and 2, this produced an underlyingly merged pool, which we could then sample from 271 

to generate our two “vowel classes”. Following the methods described in Experiment 2, we generated 272 

data with sample sizes ranging from 5 to 100 tokens per vowel, though for the sake of processing 273 

time, we only chose samples that were multiples of 5. For each combination of sample sizes then, we 274 

generated datasets with correlation coefficients ranging from 0 to 0.9, in intervals of 0.1. 100 vowel 275 

pairs per combination of sample sizes and correlation coefficients were produced, resulting in 361,000 276 

new sets of simulated vowel data, enabling us to test the effect of correlation on Pillai scores, in 277 

conjunction with sample sizes and unbalanced vowel class sizes. 278 

Across all experiments, Pillai scores were calculated for each pair of simulated vowel data. 279 

Pillai scores were calculated by fitting a MANOVA model to the data using the manova() function in 280 

R. The simulated F1-F2 measurements were the dependent variables and the vowel class was the only 281 

independent variable. While it would be possible to incorporate additional simulated independent 282 

variables such as place of articulation and duration into the MANOVA, we consider this to be beyond 283 



   
 

 14 

the scope of the current paper, which focuses on the effect of sample size on resulting Pillai scores. 284 

We therefore include only historical vowel class in our models, and leave more complex MANOVA 285 

models to future work. The Pillai scores and p-values associated with the vowel class variable were 286 

then extracted from that MANOVA model. To reiterate, the Pillai scores for all of these distributions 287 

should be very close to zero (indicating complete overlap) because every vowel pair was generated 288 

from the same underlying bivariate normal distribution. Because the data is randomly generated, some 289 

Pillai scores will be higher than others, but by rerunning the simulation many times per sample size, 290 

we can begin to see patterns that may emerge at a given sample size. 291 

The coding for this study was done in the R programming language (R Core Team 2021) with 292 

the help of the tidyverse suite of packages (Wickham et al. 2019) and joeyr (Stanley 2021). 293 

Visualizations were generated using ggplot2 (Wickham 2015) and see (Lüdecke, Patil, et al. 2021) with 294 

color palettes from ggthemes (Arnold 2018) and scico (Pedersen & Crameri 2020). 295 

III. RESULTS 296 

E. Experiment 1: Equal sample sizes 297 

To address how sample size affects Pillai scores, we first present the results from Experiment 298 

1, where the two simulated vowel classes were the same size. Before inspecting the results of all sample 299 

sizes though, it is important to understand how the 1000 Pillai scores were distributed within a given 300 

sample size. Figure 1 shows two different views of the distribution of Pillai scores when the sample 301 

size for both groups was 10.  We see that the distribution of points representing resulting Pillai scores 302 

is rather wide, a consequence of using such a small sample size for inferential statistics, ranging from 303 

less than 0.001 to 0.568. Much of the data is clustered near the bottom of the plot but there is a long 304 

“tail” extending upwards. This is not a haphazard pattern, but rather follows a distribution that can 305 
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be transformed into an F distribution and reflects the underlying mathematical properties of how Pillai 306 

scores are calculated (cf Rencher & Christensen 2012: 182). For this particular sample size, the mean 307 

Pillai score was 0.104, the median was 0.077, and the 95th percentile was 0.294. As seen below, these 308 

numbers change depending on the sample size, but the underlying distribution of the Pillai scores is 309 

consistent across sample sizes. We show this distribution to dispel any misconceptions that Pillai 310 

scores are uniformly distributed within a particular range, and to highlight that generally they fall near 311 

the lower end of the distribution.  312 

 313 

 314 

Figure 1: Distribution of Pillai scores on 1000 pairs of simulated groups, each with a size of 315 

10.  316 
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With that distribution in mind, we can now zoom out to view all samples at once. Figure 2 317 

shows all 96,000 Pillai scores by their sample size. Though present at all sample sizes, the “bottom-318 

heavy” distribution shown in in Figure 1 is not displayed in Figure 2, in order to make the general 319 

trend across samples easier to see. It is immediately apparent that larger groups more consistently 320 

produced lower Pillai scores. With very small sample sizes (groups of fewer than 10 observations per 321 

vowel class), Pillai scores were quite high. For these small sample sizes, Pillai scores were sometimes 322 

closer to 1 than 0, even for these underlyingly merged vowel classes which should, in principle, return 323 

a Pillai score of 0. In other words, these small sample sizes sometimes resulted in very misleading Pillai 324 

scores that may cause a researcher to interpret two vowel classes as distinct even if the true underlying 325 

distribution was perfectly merged. As the sample size increases, Pillai scores were more consistently 326 

low, as we would expect for underlyingly merged vowels. 327 

The black line overlayed on Figure 2 indicates the 95th percentile for each sample size. This 328 

line also very closely corresponds to the threshold for vowel class being statistically significant in the 329 

MANOVA models: almost all points above that line had p-values less than 0.05 while almost all points 330 

below it had greater p-values. Because we are modeling the null hypothesis (i.e. underlyingly merged 331 

vowel classes), the distribution of p-values is uniform. It therefore is unsurprising, and in fact expected, 332 

that the highest 5% of Pillai scores within a given sample size also return p-values less than 0.05. This 333 

line shows that if there are just 10 observations per vowel class, 95% of the Pillai scores were under 334 

0.3. However, as is evident in Figure 2, a threshold of 0.3 is only applicable to a sample size of 10 per 335 

group since Pillai scores decrease with larger samples. For example, the 95th percentile of returned 336 

Pillai scores does not drop to 0.1 until there are 30 observations per group.   337 
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 338 
Figure 2 (color online): Pillai scores for all simulations of equally-sized groups simulations, by 339 

sample size.  340 

 341 

F. Experiment 2: Unequal sample sizes 342 

While the previous section found that sample size affects Pillai scores in a predictable way, 343 

with larger samples returning more reliable Pillai scores, in this section we conduct further simulations 344 

to explore what effect, if any, an unbalanced sample has on Pillai scores. Unless data collection is 345 

carefully controlled to include a fixed number of tokens per vowel class, Pillai scores are run on vowel 346 

classes that are not comprised of the same number of tokens. Here we ask: what effect do grossly 347 

unbalanced groups have on Pillai scores? 348 
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 349 

Figure 3 (color online): Mean Pillai scores for all simulations.  350 

 351 

Figure 3 shows the mean Pillai scores from the 100 simulations for each combination of 352 

sample sizes between the two vowel classes. Going from the bottom left corner (two small sample 353 

sizes from each vowel class) to the top right corner (two large sample sizes from each vowel class), 354 

we see a general trend of decreasing Pillai scores as sample sizes increase. Reflecting Figure 2, we see 355 

these decreasing Pillai scores dropping more sharply as sample sizes are small (under around 30 tokens 356 

per vowel class).  357 
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A surprising pattern emerges when we look closely at the resulting Pillai scores from unequal 358 

sample sizes: namely, that unequal samples across the two vowel classes do not impact Pillai score—359 

it is only the total sample size taking both vowel classes together that matters. For example, the mean 360 

Pillai score for a pair of 10 tokens and 50 tokens drawn from this underlyingly merged distribution is 361 

0.0358 and the mean Pillai score for a pair of 20 and 40 tokens is 0.0355. A pair of 30 tokens and 30 362 

tokens drawn from an underlyingly merged distribution is nearly identical: 0.0381. We see this pattern 363 

visually reflected along the diagonal between the top left corner and the bottom right corner of Figure 364 

3, which shows a symmetrical resulting Pillai score for all unequal pairs of samples that sum to the 365 

same total. In other words, we find that neither the existence of an unequal sample size between vowel 366 

classes nor the degree of unequalness impact Pillai score. 367 

These findings bring us to recommend simply using as many tokens as researchers have 368 

available for an individual speaker, to bring the total sample size as high as possible. As seen in Section 369 

5 below, when comparing across speakers, it is important to recall that total sample size impacts the 370 

resulting Pillai score, and we recommend normalizing and reporting total sample sizes across speakers 371 

in a study to make resulting Pillai scores maximally comparable.  372 

 373 

G. Experiment 3: Correlated F1 and F2 values 374 

One potential caveat for Experiments 1 and 2 is that they are based on uncorrelated F1 and 375 

F2 values (producing a circular distribution in F1-F2 space), while in naturalistic speech vowel formant 376 

data is typically correlated (elliptical in F1-F2 space). To evaluate whether the correlation of the vowel 377 

formants affects Pillai scores, our final experiment explicitly tests the effect that correlated dependent 378 

variables have on Pillai scores by generating bivariate normal distributions with various degrees of 379 

correlation. Like the previous two experiments, Pillai scores were calculated, only this time the effect 380 

of sample size, unequal group sizes, and correlation were explored. 381 
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Since this experiment modified three variables (group 1 size, group 2 size, and correlation), 382 

visualization of all the data is less straightforward. Instead, we ran a linear regression model on these 383 

Pillai scores, with the log-transformed Pillai score as the dependent variable and the log-transformed 384 

total sample size and the correlation as predictors (Table 1). We find that correlation was not a 385 

significant predictor in these 361,000 simulations, meaning there was no significant difference between 386 

the Pillai scores of uncorrelated data and correlated data, given a particular total sample size. We also 387 

find that unbalanced data did not affect Pillai scores, even in these correlated datasets. Thus we can 388 

be confident that our results, and the implications and recommendations drawn from them, are 389 

applicable even to correlated, unbalanced data like what is typically found in real vowel formant 390 

measurements. 391 

 392 

Table 1: Summary statistics of a linear regression model on Pillai score, showing that, despite 393 

the very large number of observations, correlation is not a significant predictor. 394 

 Estimate Std. Error t-value p-value 

Intercept 0.243484 0.023980 10.153 <0.001 

log(n) –

1.022667 

0.005114 –199.965 <0.001 

correlation –

0.003328 

0.007372 –0.451 0.652 

Adjusted R2 = 0.09972; F(2, 360,997) = 19,993.16; p < 0.001. 395 

 396 

 397 

 398 
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IV. IMPLICATIONS 399 

A. Choosing a threshold based on sample size 400 

As a result of these simulations, we are in a position to recommend a formula that researchers 401 

can use as a guide to determine whether a given resulting Pillai score indicates a merger. We sought a 402 

formula that was a function of sample size and could provide the 95th percentile for Pillai scores given 403 

that two groups come from the same underlying distribution. In other words, we wanted to find the 404 

function for the black line in Figure 2. We chose the 95th percentile for this distribution to align with 405 

the common benchmark of p < 0.05. 406 

The formula is based on the observation that by taking the natural log of the Pillai score and 407 

the natural log of half of the total sample size of both groups (essentially log-transforming the axes in 408 

Figure 2), the 95th percentile per sample size followed a straight line with an intercept of 1 and a slope 409 

of –1. Because “half of the total sample size” can be confusing, we begin by simplifying this to a 410 

variable m, which represents n/2 where n is the total sample size across both groups. In other words, 411 

m is the average sample size per group. These intercepts were determined by rerunning Experiment 1 412 

100 more times and fitting a simple linear regression to the 95% confidence interval for the Pillai 413 

scores in each iteration. We found that a line with an intercept of 1 and a slope of –1 was within the 414 

95% confidence interval of those parameters approximately 95% of the time. We therefore assume 415 

that these parameters are correct in the probability density function for the line we seek to model. The 416 

formula therefore begins as pillai = 1 – m. But because this straight line only makes sense when both 417 

x and y are log-transformed, it must be modified to be log(pillai) = 1 – log(m). At this point, we solve 418 

for pillai, using ex as the antilog function, 𝑝95 =  𝑒1−𝑙𝑜𝑔 (m)￼. Reducing v￼ produces the formula 419 

that we recommend for determining a Pillai score cut off, 420 

 421 

 𝑝95 =  
𝑒

𝑚
 (1) 422 
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 423 

where p95 is the 95th percentile of Pillai scores given the average sample size per group m. The 424 

curve that is generated by Equation 1 very nearly follows the black line in Figure 2, which represents 425 

the 95th percentile of Pillai scores given the average sample size (which is the same as the sample size 426 

for each group in that figure since both groups were the same size). We believe this formula can be 427 

fruitfully used to determine a reasonable cutoff for “merged” status for a given total sample size. 428 

Using Equation 1, we see that, for example, a sample of 20 total observations would produce 429 

a Pillai score less than or equal to 0.2718 95% of the time if the two vowel classes were underlyingly 430 

merged (we note that this is a close approximation to the cutoff of 0.3 that Jibson (2021) chose for 431 

his total sample size of 20). For illustration, Table 2 presents threshold suggestions drawn from this 432 

formula for different total sample sizes, highlighting that it takes a great deal of data to reliably return 433 

Pillai scores that are close to zero for underlyingly merged data (recall that Pillai scores closer to zero 434 

reflect a more “merged” production). We recommend that researchers use Equation 1 in conjunction 435 

with p-values to make a more informed decision about the merged status of two vowel classes rather 436 

than an ad hoc or arbitrary cutoff.  437 

 438 

Table 2: Pillai thresholds at various sample sizes based on Equation 1. 439 

Total sample size Pillai threshold for “merged” 

20 0.2718 

40 0.1359 

60 0.0906 

80 0.0680 

100 0.0544 



   
 

 23 

120 0.0453 

 440 

H. Sample size matters across speakers but not across vowels 441 

One important takeaway from these simulations is that it takes a relatively large amount of 442 

data to reliably (meaning 95% of the time) return a low Pillai score such as 0.1 from two underlyingly 443 

merged vowels. In an analysis of English /ɑ/ and /ɔ/, for example, conversational data can typically 444 

provide a sufficient number of observations for a robust analysis of overlap. However, few studies 445 

that analyze wordlist data contain many more than 10 tokens of these two vowels. And even within 446 

long-form conversational data, if the research question focuses on an infrequent phonological variable, 447 

the total sample size quickly drops. Because total sample size has a major impact on the resulting Pillai 448 

score, we recommend researchers choose a relevant threshold for “merger” status, based on their total 449 

sample size, and use it in conjunction with the resulting p-value to make a determination about merger 450 

status for their data. 451 

Perhaps the most surprising takeaway from these simulations, for both authors, was that 452 

although Pillai is not a nonparametric test, it does not actually matter if the token counts across the 453 

two categories being investigated are unequal. Instead, the most critical consideration is the total 454 

number of tokens, summed across both categories. This is particularly important for naturalistic 455 

sociolinguistic work, which relies on casual conversation rather than carefully constructed word lists 456 

for data, meaning that is it often not possible to obtain balanced token counts across categories. 457 

Following the results of Experiment 2, we can reassure researchers that unbalanced tokens across 458 

vowel classes will not impact the resulting Pillai score. Instead, and following the results of Experiment 459 

1, we recommend using as many total tokens possible for an analysis of a single speaker, regardless of 460 

unbalanced samples across vowel classes for that speaker. 461 
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At the same time, any study aiming to compare the “merger” status of multiple individual 462 

speakers should take into account the total sample sizes for each speaker, and especially consider the 463 

fact that sample sizes (and therefore, the interpretation of resulting Pillai scores) may be different 464 

across speakers. One of the primary goals for a robust measure of vowel overlap in sociolinguistics 465 

has been to track the development of vowel mergers and splits across speakers in a given corpus (Nycz 466 

& Hall-Lew 2013; Johnson 2010; Strelluf 2018; Labov et al. 2016) to analyze the trajectory of large-467 

scale language change over time. Because distributions with lower token counts produce inflated Pillai 468 

scores, this means speakers who are less talkative will artificially appear to have more distinct vowels 469 

than speakers who are very talkative.vi We recommend using one of two ways to account for unequal 470 

sample sizes across speakers.  471 

One option is for researchers to conduct an analysis of individual speakers, incorporating all 472 

the relevant pieces of evidence (the recommended Pillai threshold given an individual speaker’s sample 473 

size, Pillai scores, p-values, and visualizations), to make a determination about the merged status of 474 

each speaker. Section V.A presents an example of this method in action, where we demonstrate how 475 

we leveraged all these pieces of evidence together to try to understand the merged status of each 476 

speaker. This method allows researchers to obtain a fairly robust understanding of individuals as they 477 

compare to each other and across styles. However, since this method requires researchers to synthesize 478 

a number of gradient measures into discrete categories (such as “merged”, “ummerged”, and perhaps 479 

“partially merged”), it makes it more difficult to track fine grained changes in the development of a 480 

merger across a large speech community over time.  481 

For researchers aiming to analyze fine grained differences over real or apparent time across 482 

many speakers, however, it may be more beneficial to keep Pillai as a gradient measure. To analyze 483 

Pillai across many speakers at once, we recommend analyzing the same number of tokens per speaker. 484 
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Our recommendations for how best to do this are discussed in detail in Section V.B, and an example 485 

of the R code used to apply this recommendation is provided in the supplementary file.   486 

A similar issue arises when comparing merger status from a single individual speaker but across 487 

multiple speech styles. In particular, sociophonetic work often compares casual speech styles like 488 

conversation to more formal speech styles, such as a minimal pair list or a reading task. Critically for 489 

Pillai scores, since lower token counts will artificially appear more distinct, speech styles such as word 490 

lists and reading tasks with lower token counts will likewise artificially appear more distinct than speech 491 

styles with higher token counts (such as casual speech). In sum, there is a strong risk that a Pillai score 492 

difference between speech styles may be interpreted as a stylistic difference (whereby speakers appear 493 

to be maintaining a distinction in wordlists that they do not maintain in casual speech), when the effect 494 

is entirely driven by differences in total sample sizes across the two styles. It’s not uncommon, for 495 

instance, to hear of speakers apparently undoing mergers in read speech in comparison to their casual 496 

speech (cf. Labov 1994: 80; Berry 2018; Berry & Ernestus 2018); while Labov (1994) correctly points 497 

out that apparent unmergers in careful speech may be speakers hypercorrecting in response to 498 

orthographic differences across historically distinct vowel classes, we can add that distinctions 499 

measured by Pillai score will additionally be impacted by sample size. We urge researchers who use 500 

Pillai as a metric of overlap to pay close attention to differences in total sample sizes across speech 501 

style,vii and either control for total sample size across styles or adjust their threshold of “merger” in 502 

each style accordingly, following the same recommendations provided above and elaborated on in 503 

Section V. 504 

 505 

I. What to report when using Pillai scores 506 

Finally, we end with some general recommendations for what researchers should include in 507 

their results when using Pillai scores as a measure of overlap, in addition to the model specification 508 
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(i.e, the independent and dependent variables). First, because total sample size impacts Pillai score so 509 

strongly, we recommend always reporting total sample size per speaker (or per style, for studies that 510 

compare merger across speech styles). This practice will have the added benefit of enabling better 511 

comparisons across sociolinguistic studies, in turn enabling researchers to gain a clearer picture of the 512 

large-scale spread of some ongoing mergers such as the /ɑ/-/ɔ/ merger. 513 

Second, in addition to reporting and controlling for total sample sizes, we recommend 514 

reporting p-values where possible. In other words, where studies report individual speakers’ (or styles’) 515 

Pillai scores, those should always include the total sample size and the p-value as well. We are not 516 

necessarily advocating for an increased reliance upon p-values as a binary meaningful threshold, 517 

particularly since some statisticians are urging quantitative researchers to abandon declarations of 518 

“statistical significance” and to instead understand p-values as one gradient measure in concert with 519 

additional evidence (Wasserstein, Schirm & Lazar 2019). However, reporting a Pillai score without its 520 

accompanying p-value is akin to reporting a regression estimate without a p-value, a p-value without 521 

an effect size, or a mean without a standard deviation. A Pillai score is a test statistic and should be 522 

reported as such. These two numbers in conjunction paint a better picture of the merged status of a 523 

pair of vowels than either one in isolation. 524 

 525 

V. A CASE STUDY 526 

The following is a case study to illustrate how one might conduct an analysis of vowel merger 527 

using the recommendations in this paper. As illustrative data, we draw from sociolinguistic interviews 528 

conducted and analyzed by the first author with residents of southwest Washington State, a region 529 

where the low back vowels (/ɑ-ɔ/) are often merged, though with some indication of separation in 530 

some speakers (see Stanley 2020 for more details). On average across the 52 participants analyzed 531 



   
 

 27 

here, interviews lasted 46 minutes and yielded 143 tokens containing either /ɑ/ or /ɔ/ in preobstruent 532 

position. After the interviews, 30 of those participants then read a wordlist containing another 20 533 

tokens in a more careful style.  534 

 535 

J. Analysis of individual speakers 536 

We performed a MANOVA on each speaker’s F1 and F2 measurements, separately for each 537 

style, with historic vowel class as the only predictor. Given the number of observations produced by 538 

each speaker, Equation 1 was implemented to establish a potential cutoff value for each style. The p-539 

values and the Pillai scores were extracted from the MANOVA model and the latter were compared 540 

to the cutoff values. 541 

In this sample, there are some cases where the evidence overwhelmingly points towards a 542 

merger. For example, 48-year-old Donna produced 179 low back vowels in the conversational portion 543 

of her interview. With that many tokens, Equation 1 suggests that if her vowels were underlyingly 544 

merged, her Pillai score should be less than 0.0304 about 95% of the time. In other words, anything 545 

less than 0.0304 would be evidence for a merger. As it turns out, the MANOVA model performed on 546 

her data yielded a Pillai score of 0.0289 with a p-value of 0.0756. The fact that her Pillai score is less 547 

than the threshold for her token count and that the p-value above 0.05 means that historical vowel 548 

class category does not predict Donna’s acoustic realization, suggesting that Donna’s two vowel 549 

classes are likely underlyingly merged. In the wordlist data, there were only 20 tokens, so the suggested 550 

cutoff value determined by Equation 1 is much higher at 0.2718 because of the smaller sample size. 551 

The MANOVA performed on Donna’s wordlist data produced a Pillai score of 0.1648 (p = 0.216). 552 

We reiterate that sample sizes also impact p-values, with smaller sample sizes producing higher p-553 

values. Taken all together, this data makes a strong case that /ɑ/ and /ɔ/ are underlyingly merged in 554 

Donna’s speech in both speech styles.  555 
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On the other hand, some speakers’ data are indicative of a distinction. Kim, another 48-year-556 

old woman, produced 137 low back tokens in the conversational portion of her interview. Equation 557 

1 suggests that a Pillai score less than 0.0397 would be evidence for a merger, but the MANOVA 558 

performed on her data returned a Pillai score of 0.0658 (p = 0.010). Though the Pillai score is relatively 559 

close to zero, we do not interpret her data as underlying merged, since with that many observations 560 

from a truly merged distribution we would expect an even lower Pillai score (less than 0.0397). Based 561 

on the 20 tokens from her wordlist, the cutoff would be 0.2718 but the MANOVA on those 20 tokens 562 

yielded a Pillai score of 0.3700 (p = 0.020), further suggesting a distinction. Because Kim’s Pillai scores 563 

were higher than the thresholds and were accompanied by low p-values for both speech styles, we 564 

conclude that Kim’s low back vowels, while close in acoustic space, are not fully merged.    565 

However, even when considering p-values alongside recommended thresholds, not all cases 566 

are as straightforwardly interpretable as Donna’s and Kim’s. Scott is a 28-year-old man whose 567 

interview contained 195 low back tokens. The Pillai score based on his data was 0.1975, far higher 568 

than the threshold (0.0279) produced by Equation 1, and was accompanied by a low p-value (p < 569 

0.001), suggesting two distinct underlying vowel distributions. However, the Pillai score based on the 570 

20 tokens he produced in his wordlist (0.0397) was much lower than the threshold (again, 0.2718), 571 

and had a high p-value (p = 0.7090). With the Pillai score lower than the threshold and accompanied 572 

by a high p-value his wordlist data, it is tempting to interpret Scott as being a rare case of producing a 573 

merger in the wordlist that he does not produce in the conversational portion of the interview. 574 

However, because the sample size is so small in the wordlist, the Pillai score (and indeed, any result of 575 

an inferential statistical test) should be taken with a large grain of salt. We include Scott’s data here in 576 

part to demonstrate that even when leveraging Pillai scores alongside a recommended threshold and 577 

a p-value, data with low token counts can still be difficult to interpret. 578 
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We can add one additional tool to the suite of evidence we consider when diagnosing 579 

individual speakers: a visual inspection of a plot. Figure 4 shows the distributions of /ɑ/ and /ɔ/ 580 

tokens in F1-F2 space for conversational data (left) and wordlist data (right) for both Donna (top), 581 

Kim (middle), and Scott (bottom). Ellipses represent one standard deviation for each vowel class. A 582 

visual inspection of these plots shows that both vowel classes exhibit a fair amount of overlap in both 583 

styles, with what appears to be more overlap in Donna’s, as her /ɔ/ vowel class actually encompasses 584 

/ɑ/ in both speech styles (a distributional property that indicates merger). Adding the measures of 585 

Pillai scores, using the recommended thresholds for “merged” given the specific token counts, along 586 

with p-values for these speakers in these two styles, enables us to more confidently state that Donna’s 587 

two vowels are underlyingly merged, while Kim’s are distinct in both styles and Scott’s are distinct at 588 

least in the conversational style. For both Donna and Kim, the Pillai scores were higher in the wordlist 589 

style compared to the conversation. Seeing these differences in Pillai scores alone, a researcher may 590 

be tempted to conclude that there is style shifting occurring for both speakers, such that the merger 591 

undoes itself in more careful speech. Leveraging all of the evidence together – Pillai scores alongside 592 

the recommended threshold for a given sample size, as well as p-values and a visual inspection of the 593 

data – allows us to reject this interpretation and instead see important differences between speakers 594 

in the sample. 595 
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 596 

Figure 4 (color online): Low back vowels from three speakers across two styles.  597 

 598 

 599 
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We note, in fact, that interpreting Pillai score alone without the additional evidence of 600 

threshold and p-value provides a misleading interpretation of the entire dataset. Across the 30 speakers 601 

in the sample who completed both tasks, a one-sided paired t-test comparing Pillai scores in 602 

conversational data to Pillai scores in wordlist data suggests that there is a statistically significant trend 603 

towards higher Pillai scores (i.e., a “less merged” pronunciation) in the wordlist data (t = -3.3296, df 604 

= 29, p = 0.001). This pattern obtains across most speakers, suggesting on the surface that almost 605 

every speaker in the sample “unmerges” their vowels in wordlist style data or that they only merge the 606 

vowels in casual conversation. Given that the low-back merger is a change in progress (cf. Labov, 607 

Yaeger & Steiner 1972 for other examples), this pattern obtaining across this many speakers of all ages 608 

is suspiciously regular – much more regular than we would expect given patterns of variation and 609 

change in sociophonetic work. In fact, it was this apparently regular unmerging found in these 610 

participants’ wordlists that led us to investigate the effect of sample size in the first place. 611 

Incorporating all of the relevant pieces of evidence (recommended threshold given sample size, along 612 

with Pillai scores and p-values) allows us to understand the suspiciously regular finding as an artefact 613 

of wordlists having far smaller sample sizes than conversational speech. Likewise, leveraging all of the 614 

evidence, including sample size differences across styles, allows a clearer understanding of the 615 

individual speakers in the sample and whether they are likely to be truly merged or not. 616 

 617 

K. Analysis of many speakers 618 

While the level of scrutiny in the previous section is appropriate and encouraged for analyzing 619 

individual speakers, we acknowledge that researchers may have a different goal in mind. For instance, 620 

researchers tracking the development of a merger as it becomes closer together in phonetic space (and 621 

before a categorical merging) will want to understand how the two vowel classes become less distinct 622 

across generations – even before a categorical merger has taken place. Analyzing data speaker-by-623 
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speaker requires us to take gradient measures (Pillai scores, threshold, and p-value) and interpret them 624 

into discrete categories for each speaker and style (“merged”, “not merged” or “partially merged”, 625 

depending on the researcher’s interpretation); this discrete interpretation in turn makes it difficult to 626 

track how large-scale change proceeds across generations. In this section we explore how Pillai scores 627 

have changed over time in this sample by fitting a linear model to the data after implementing a 628 

bootstrapping procedure to remove difference between sample sizes across speakers.  629 

To ensure that Pillai scores are comparable across a large number of individual speakers, we 630 

recommend reducing the size of each speaker’s dataset down to the sample size of the speaker who 631 

contributed the least amount of data. Downsampling in this way will allow us to obtain Pillai scores 632 

that are comparable across all speakers, and therefore allow us to track fine-grained changes in merger 633 

status across apparent time. 634 

To begin our downsampling example, we first restrict our analysis to the more prolific 635 

conversational portion of the interview, to maximize the possible total sample size per speaker. The 636 

least talkative speaker in this sample produced only 82 tokens in this style. So, even though some 637 

speakers produced many more (as many as 327 in one case), we took a random sample (with 638 

replacementviii) of just 82 tokens from each speaker. However, we found that Pillai scores from a 639 

random sample of one speaker’s data varied considerably from a different random sample from that 640 

same speaker. So, we implemented a bootstrapping procedure and took 1000 random samples (with 641 

replacement) of 82 tokens from each speaker’s dataset, calculated the Pillai scores and other summary 642 

statistics from each sample, and aggregated them by speaker. The correlation between speakers’ Pillai 643 

scores on the full dataset and speakers’ mean Pillai scores across the 1000 samples was 0.9984, 644 

suggesting that the aggregated bootstrapped values are a very good approximation of the full dataset’s 645 

values. The difference is that they are based on equal sample sizes rather than different sample sizes, 646 

which means that the resulting Pillai scores will be comparable across speakers. 647 
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 648 
Figure 5 (color online): Log-transformed Pillai scores by gender and birth year with predicted 649 

regression lines. Lower values long the y-axis indicate a greater overlap between /ɑ/ and /ɔ/. The 650 

horizontal dotted line crosses the y-axis at log(0.0663) = –2.7136, which is based on the threshold for 651 

82 observations calculated using Equation 1; values below that line may be considered merged. 652 

To identify whether there were patterns across genders or time, we fit the log-transformed 653 

Pillai scores to a linear model with gender, birth year, and their interaction as predictors (Figure 5). 654 

Since the data was downsampled, Pillai scores can be directly compared and the influence of 655 

particularly talkative or reticent speakers is minimized. The results of this model show that Pillai scores 656 

for older women are low (indicating a merger) and older men are high (indicating a distinction). The 657 

difference between men and women decreases over time, with Pillai scores converging among the 658 

youngest speakers.  659 

VI. CONCLUSION 660 

In this paper, we present a close view into the effect of sample size on resulting Pillai scores, 661 

a common measure for quantifying vowel overlap. We use a series of simulation experiments drawing 662 

from an underlyingly merged pair of vowels to demonstrate (1) that larger sample sizes yield reliably 663 
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lower Pillai scores, (2) that unequal group sizes across the two vowel classes is irrelevant in the 664 

calculation of Pillai scores, and (3) that it takes more data than many sociolinguistic studies collect to 665 

reliably return a low Pillai score (e.g., under 0.1) even for underlyingly merged data. These results have 666 

implications for how Pillai scores are compared across studies and between speakers or speech styles 667 

within the same study. We provide some recommendations for maximizing reliability in the use of 668 

Pillai scores, and provide a formula to assist researchers in determining a reasonable Pillai score 669 

threshold to use as an indicator of merged status given their sample size. We recommend the use of 670 

Equation 1 a in conjunction with the Pillai scores’ accompanying p-values to make informed decisions 671 

about the merged status of two vowels in a given speaker. By properly using and reporting aspects of 672 

Pillai score, researchers can come closer to accurately quantifying vowel overlap, identifying vowel 673 

mergers, and ultimately understanding broad patterns of variation and change in vowel merger. 674 

 675 

ACKNOWLEDGMENTS 676 

Thanks to the Linguistics Discussion Group at BYU and the audience at ASA2021 in Seattle 677 

for their useful comments. We thank William Christensen and Joe Fruehwald for their help in 678 

understanding underlying distributions and transformations. We also thank the two anonymous 679 

reviewers for their thoughtful and encouraging feedback, without which this paper would have been 680 

substantially less clear and less impactful. Any remaining faults are our own. The first author also 681 

graciously acknowledges the University of Georgia Graduate School Dean’s Award for funding the 682 

fieldwork that produced the data used in the case study.  683 

 684 



   
 

 2 

 685 

See supplementary material at [URL will be inserted by AIP] for a brief tutorial on how to 686 

implement these recommendations in R. 687 
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 881 

 
i See also Kelley & Tucker (2020) for details on the overlapping coefficient, another 

nonparametric method for calculating overlap. 

ii Preliminary work for Sneller (2018) attempted, with mixed results, a modified model 

approach of Bhattaharyya’s Affinity by extracting model values for fixed effects and manually adjusting 

the data. However, the onerousness of this approach makes it not widely implementable in 

comparison with Pillai, which has the advantage of being able to easily integrate commonly used 

mixed-effects models. 
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iii For the uncorrelated data, the bivariate normal distribution was most easily generated by 

combining two independent univariate normal distributions, because the product of their probability 

densities is equal to their joint probability densities (Johnson & Wichern 2012 chapter 4 page 151). 

We generated F1 in R by running rnorm(x, mean =0, sd=1), where x is the number of tokens generated. 

F2 was generated using the same code, and the two sets of numbers were combined to create the 

bivariate normal distribution. 

iv In this paper, we focus on the effect of sample size for underlyingly merged speakers. Future 

work may fruitfully investigate how sample size interacts with Pillai score for underlyingly unmerged 

speakers as well. 

v Let 𝑝95 =  𝑒1−𝑙𝑜𝑔 (𝑚) . Since 𝑒𝑥−𝑦 =  𝑒𝑥+(−𝑦) = 𝑒𝑥𝑒−𝑦 = 𝑒𝑥 1

𝑒𝑦 =  
𝑒𝑥

𝑒𝑦, and since 𝑒1 = 𝑒, 

then 𝑝95 =  
𝑒

𝑒ln (𝑚). Since 𝑒ln (𝑥) = 𝑥, then 𝑝95 =  
𝑒

𝑚
. (We are grateful to the anonymous review who 

pointed out these simplification steps for this formula.) This is most easily implemented in R as 

exp(1)/m. 

vi We also reiterate the caution about small sample sizes overall, and point out that very small 

samples may increase the likelihood of a Type II error (i.e, a false negative or failing to reject the null 

hypothesis when it is actually false), leading the researcher to conclude that two vowels are merged 

when in reality there is just not enough data to detect a distinction. 

vii One reviewer asked why we did not recommend accounting for the difference in sample 

sizes across speech styles by simply adding a term for style in the linear model. The reasoning is fairly 
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straightforward: researchers cannot control how many tokens of interest are produced in the 

conversational portion of the interview, allowing the difference in token count across style to vary 

wildly by speaker. Since sample sizes influence Pillai score in a predictable way but style influences 

Pillai score in an unpredictable way (as it's dependent on the differences in sample sizes), it is 

inadvisable to use style as the predictor rather than a more straightforward way to control for or 

incorporate sample size. 

viii Note that we sample with replacement (replace=TRUE), in order to make our resampling 

comparable across all speakers including our least talkative speaker.  

If we were to resample without replacement, this introduces a confound related to sample size: 

the amount of error introduced per speaker is proportional to their sample size. Resampling without 

replacement 1000 times would produce 1000 identical distributions for the least talkative speaker, but 

1000 different distributions for every other speaker. Resampling with replacement allows us to obtain 

a standard deviation for each speaker with similar confidence, and introduces a similar amount of 

uncertainty across speakers in the means of their distributions. For more information on 

bootstrapping with replacement, we refer the reader to Ismay & Kim (2020). 
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